

The Light Ion Guide CB-ECRIS Project at Texas A&M University Cyclotron Institute

<u>G. Tabacaru (TAMU)</u>, J. Arje (Jyvaskyla), D.P. May (TAMU)

Project overview

Cyclotron Institute Texas A&M:

• 88" Cyclotron (decommissioned 1986)

• K500 Superconducting Cyclotron Upgrade started $2004 \rightarrow$ full speed 2005

Re-activation of 88" Cyclotron – deliver high intensity light particle and heavy ion beams.

Production of rare isotopes for acceleration in K500 Superconducting Cyclotron and higher intensity stripping and fragmentation beams.

Scientific program

- **1. Nuclear Astrophysics:**
 - a. Radioactive beams from K500: Asymptotic Normalization Coefficients method
 - b. Stable beams from 88": (³He,d) reactions and MDM spectrometer
- 2. Nuclear Structure:
 - a. Giant Monopole Resonance and Compressibility: GMR as a nuclear structure effect and compressibility in nuclei with much higher asymmetry
 - **b.** Cluster Structure: radioactive beams and thick target inverse kinematics technique
- **3. Fundamental Interactions:** superallowed β-decay measurements
- 4. Nuclear Dynamics and Nuclear Thermodynamics

Projected beam intensities from LIG after K500

(p,n)	Max Energy	Intensity
Product (T _{1/2})	MeV/A	particles/s
²⁷ Si (4.16s)	57	4×10 ⁴
⁵⁰ Mn (0.28s)	45	1×10⁵
⁵⁴ Co (0.19s)	45	4×10 ⁴
⁶⁴ Ga (2.63m)	45	2×10⁵
⁹² Tc (4.25m)	35	2×10⁵
¹⁰⁶ In (6.20m)	28	4×10⁵
¹⁰⁸ ln (58.0m)	28	2×10 ⁵
¹¹⁰ In (4.9h)	26	4×10 ⁵

SIMION calculations ~ 80% efficiency for 250 cm long sextupole

G. Tabacaru, ECRIS 08, Chicago

CYCLOTRON

Parameters: exit hole diameter (1 mm and 2 mm), pressure, DC-fields, distance between the exit hole and the sextupole, etc ...

Pumping system (Pfeiffer):

- ROOTS blower 1: 2000 m³/h (+ 6000 m³/h online condition)
- ROOTS blower 2: 1000 m³/h
- Turbo pumps: 520 l/s + 2× 520 l/s (CB-ECRIS)

Initial developments:

- spark chamber (ionization of impurities, He) \rightarrow current
- ²²⁸Th open source (daughters) \rightarrow alpha particles from ²¹⁶Po

Tests – spark chamber

Tests – ²²⁸Th open source

Velocity of the ions

Q: Is this velocity appropriate for an efficient injection in the CB-ECRIS?

Future plans

CB-ECRIS to be turned on in the next weeks

- **TWT max 400 W**
- coils at 250 A
- plasma?!

Inject Ra, Rn, PoDetect alphas at the extraction

□ IF success GOTO Improve_Efficiency ELSE Find Stable Conditions for CB-ECRIS

□ Measure the overall efficiency of the device

