

... for a brighter future

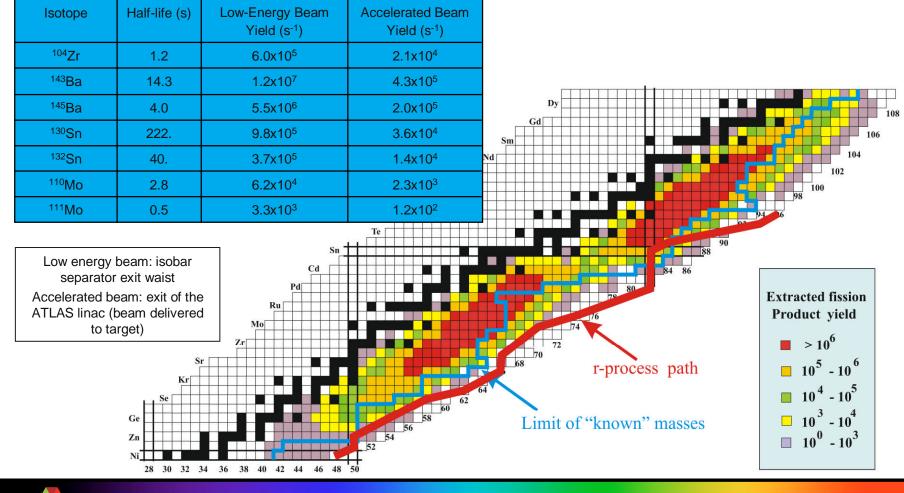
A U.S. Department of Energy laboratory managed by The University of Chicago

Initial Results of the ECR Charge Breeder for the ²⁵²Cf Fission Source Project at ATLAS

ECRIS08

September 15-18, 2008

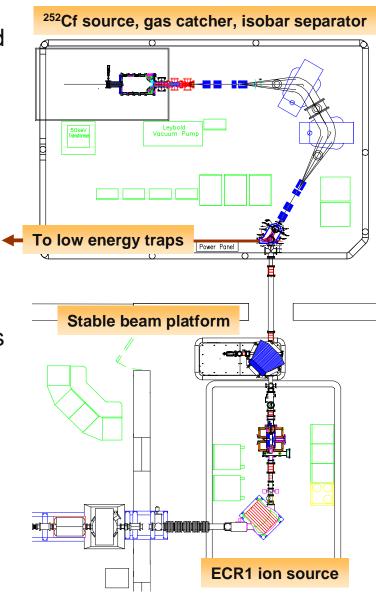
Richard Vondrasek, John Carr, Richard Pardo, Robert Scott

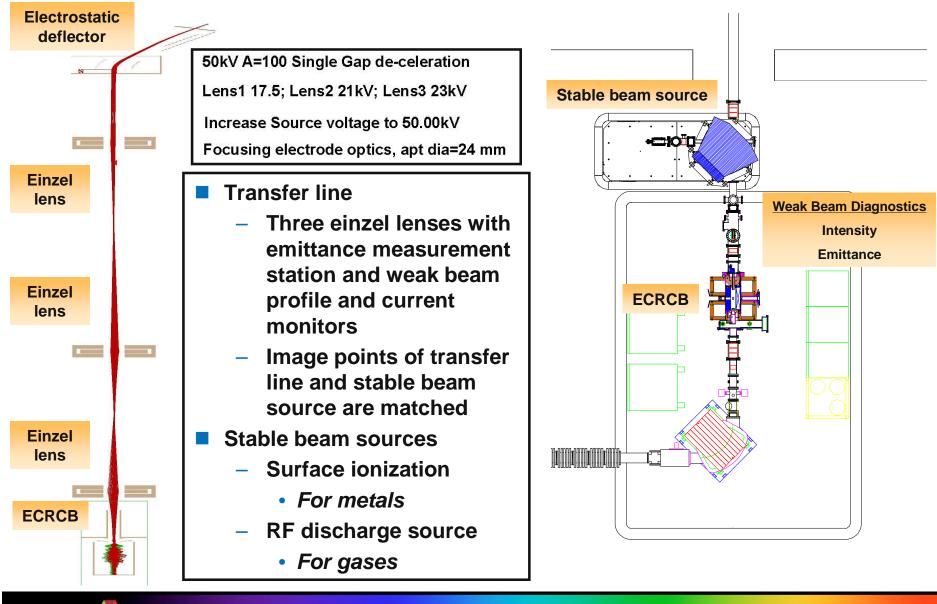

Overview

- The CARIBU project overview
- Charge breeder system
 - Stable sources, beamline, ECR source
- Results
 - Initial results with Cesium
 - Faraday cup problems
 - Background effect
 - Recent results with Cesium and Rubidium
- Future plans

The CARIBU project – CAlifornium Rare Ion Breeder Upgrade

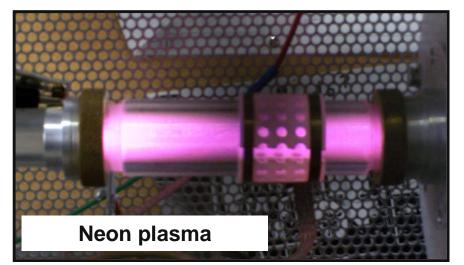
In its final configuration, a 1.0 Ci ²⁵²Cf fission source will provide radioactive species to be delivered to the ECR ion source for charge breeding



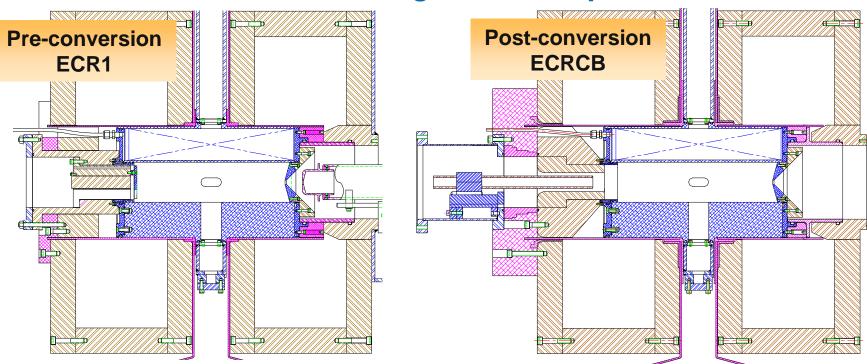

The CARIBU project

Fission products are collected and thermalized in a helium gas catcher

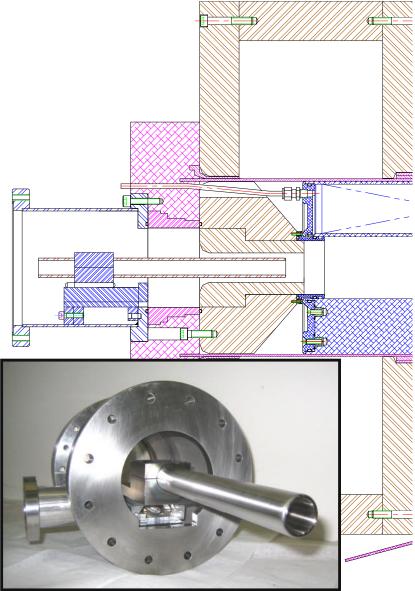
- ~20% of all activity extracted as ions
- Mean delay time <10 msec
- Extraction is element independent
- Provides cooled bunched beams for post acceleration
 - Energy spread <1 eV
 - Emittance ~3 π⁻mm⁻mrad
- High resolution mass analysis (1:20,000) limits the number of isobars in the analyzed beam
 - To achieve the required resolution, beam extraction must occur at ≥50 kV
 - Must maintain a voltage stability of ±1 V


Transfer line and stable beam source

ECRIS08 September 15-18, 2008

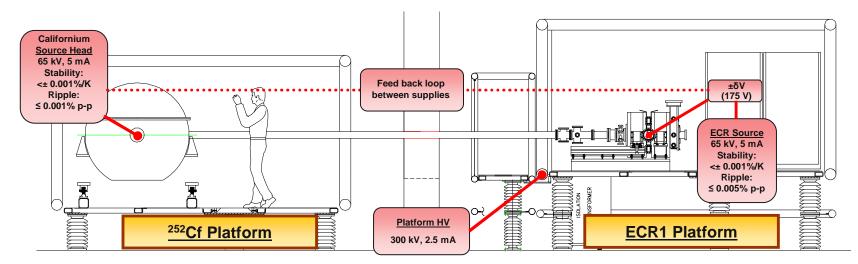

Stable beam sources

- Stable beam sources
 - HeatWave HWIG-250
 - 15 keV beam of over 1.0 μA
 - Spot size: <1 mm² at 2.5 cm from aperture
 - Pellet materials: Li, Na, Mg, K, Ca, Rb, Cs, Ba, Sr
 - RF discharge source
 - Source has been run off line providing 1-2 eµA beams of Ne, Ar, Kr, and Xe
 - Expect a larger emittance but can be controlled with slits


Source modifications for charge breeder operation

- Improved the high voltage isolation for 50 kV operation
- Modified the injection side of the source to accept low charge state beams
 - Removed the central iron plug to allow for transfer tube penetration
 - Moved the RF injection from an axial to a radial position
 - Open hexapole allows radial RF injection
 - Provides more iron so that the magnetic field on injection side is symmetric
 - Reshaped the remaining iron to improve B_{ini}

Injection side configuration

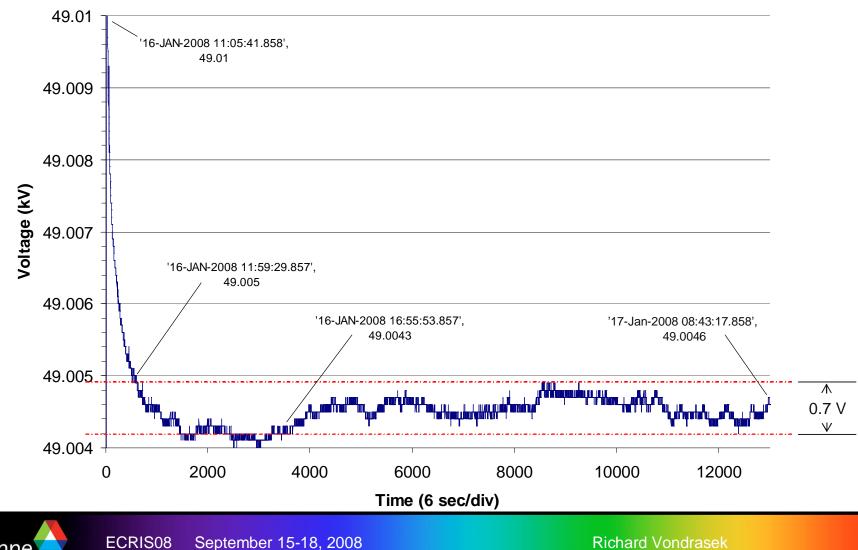

- Lexan insulator provides structure with an alumina liner exposed to vacuum
 - Base pressure: 2.0x10⁻⁸ Torr
 - Increases to 1.7x10⁻⁷ with plasma on
- Movable transfer tube
 - Highly polished stainless steel
 - 3.15 cm of travel
 - Originally placed just outside of the magnetic maximum
 - Resulted in drain current of 4.0 mA at 50 Watts and unstable source operation
 - Retracted position by 4.0 cm
 - Drain current decreased to 0.3 mA and source operation stabilized

High voltage relationships and stability

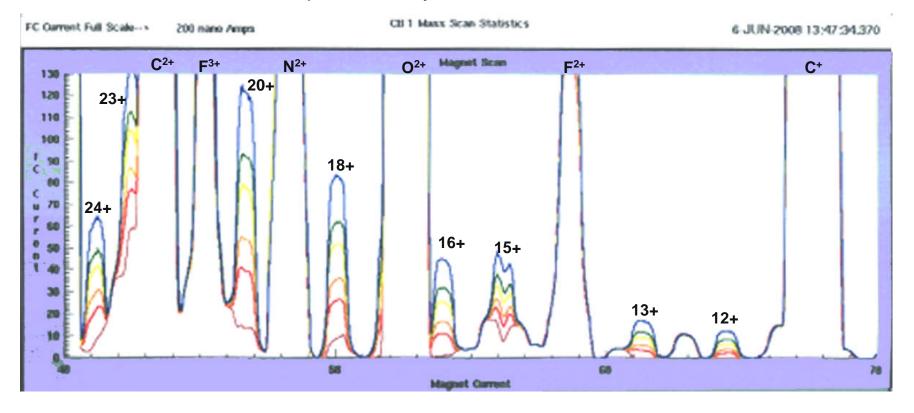
- High voltage platforms will be energized by a single power supply (300 kV, 2.5 mA)
 - Beam pipe links the two platforms together ensuring common potential
- Source heads will be energized by separate high voltage power supplies (65 kV, 5 mA)
 - Flexibility to operate in "Stand Alone" mode \rightarrow low energy traps, source development
 - Decouples any influence of ECR plasma fluctuations on the californium bias voltage
 - Ensures ±1.0 V voltage stability for isobar separator
- Additional ±175 V power supply ('tweaker') is in series with the ECRCB
- Feed back controller ensures voltage match between the Cf and ECRCB source heads
 - Adjusts the 'tweaker' supply to match the source potentials (nominally 50 kV)
 - Then an additional voltage is summed in to optimize the 1+ ion capture

High stability power supply

- Power supply specifications for charge breeder
 - 65 kVDC, 5 mA
 - − Stability: <± 0.001%/K+20 mV (<± 0.67V \rightarrow 1.34 V window)
 - Supply passed factory acceptance test
 - In house testing shows $< \pm 0.500$ V deviations at 50 kV
 - Ripple: < 0.005%+20 mV p-p (≤ 3.45 V p-p)</p>
 - Supply passed factory acceptance test
 - In house testing shows < 0.500 V p-p ripple at 65 kV
 - Gas catcher power supply will have < 0.001%+20 mV p-p ripple specification (≤ 0.67 V p-p)



In house stability test

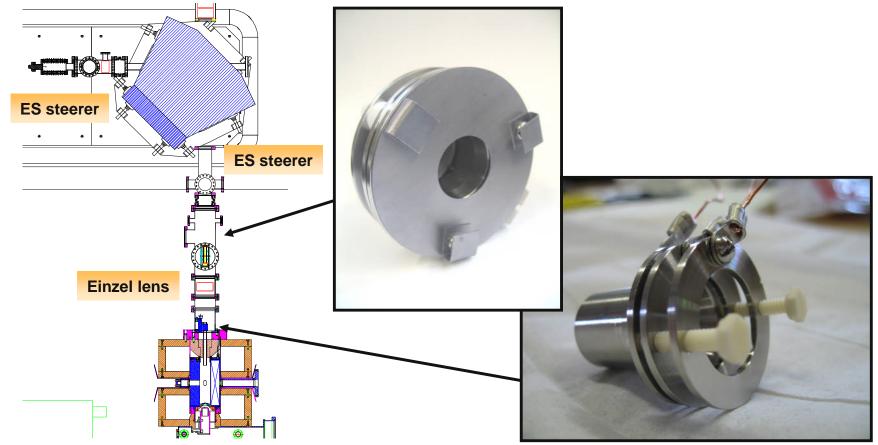

IONAL LABORATOR

Took ~1 hour for supply to warm up and voltage to settle within 1.0 V window
Voltage stayed within 1.0 V window for 24 hours

Cesium charge breeding spectrum

- We achieved our first charge bred beam in May 2008
- Mass spectrum of the ECRCB output with and without Cs+ injection
 - Background beam, without Cs⁺ injection, is shown in brown
 - Other traces represent varying levels of charge bred cesium as a function of the Cs⁺ input intensity

Charge bred cesium beam – "initial results"


Charge state	Efficiency	Efficiency after tuning 1+ line
12+	1.4	
13+	1.8	
16+	2.4	
18+	3.8	7.1
20+	6.8	9.0
24+	2.2	

- Previous results at TRIUMF using a Phoenix ECR charge breeder had 2.7% efficiency into ¹³³Cs¹⁸⁺
- So what can be wrong?
 - Beam currents are not being measured correctly 1+ or n+
 - Background measurement is not accurate

Beam current measurement

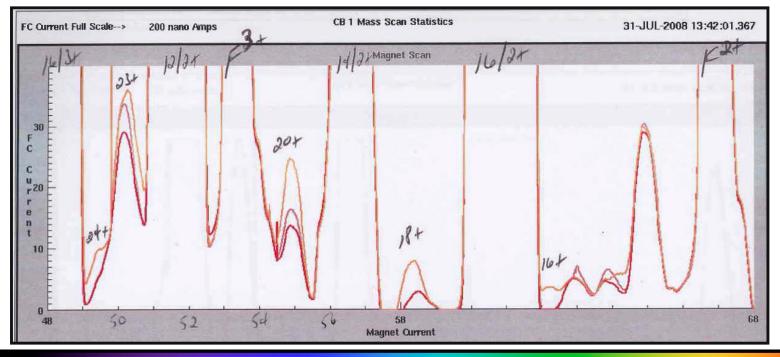
- Using a brand new Thermionics faraday cup
- Picoammeters were calibrated and in good working order
- Built a second small faraday cup and installed it at the front of the transfer tube to check the accuracy of the Thermionics faraday cup measurement

Beam current measurement

- Turned the surface ionization source back on to the same settings as the "9.0% efficiency" run
 - Thermionics cup : 34 nA
 - Small faraday cup: 125 nA
- Problem one: faraday cup was not reading properly

Cup readings in agreement

- Traced to an insulating layer on the tantalum charge collector generated during welding
 - Replaced tantalum piece with a stainless steel charge collector


Charge state	Efficiency	'Normalized' Efficiency
18+	7.1	1.9
20+	9.0	2.4

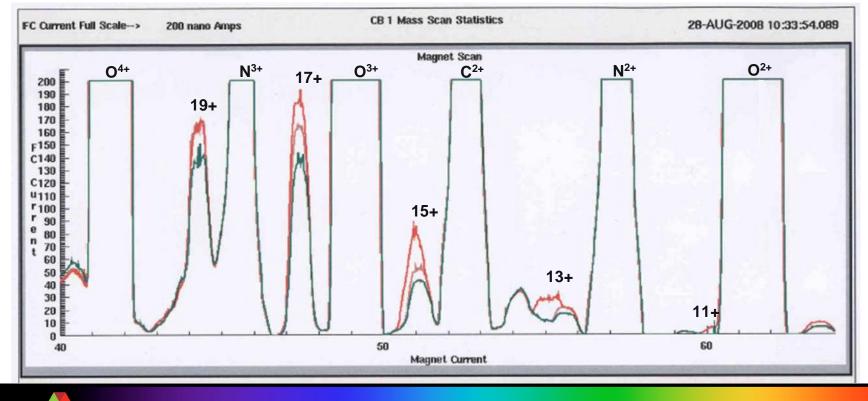
Background measurement

- Orange trace is with Cs+ injection
- Brown trace is with Cs⁺ stopped using an electrostatic steerer just after the 1+ source but before the analyzing magnet
 - Confirmed that saturating the steerer generates the same background spectrum as shutting off the 1+ source
- Red trace is with the Cs⁺ stopped using the faraday cup after analysis
 - Clearly see a difference in the background levels of 20+ and 23+

Background measurement

- The difference in the background level is due to outgassing in the 1+ analyzing magnet and low energy line which is generated by the beam coming out of the injection side of the ECRCB
 - ¹³³Cs²⁰⁺ very similar m/q as ⁴⁰Ar⁶⁺
 - ¹³³Cs²³⁺ very similar m/q as ⁴⁰Ar⁷⁺
- For ¹³³Cs²⁰⁺, with the same incoming Cs⁺ intensity, the effect is clear
 - Saturating the steerer
 - 2.6% efficiency
 - Putting the faraday cup in
 - 6.5% efficiency
- Problem two: background measurement was not accurate
 - Due to gas loading that is not present when the faraday cup is the beamline and intercepts the outgoing ECR beam
 - Background measurement has to be taken by saturating the steerer

Real results of charge bred cesium


- We now have no idea how to 'normalize' the previous experimental results
 - Repeat all of the measurements
 - Surface ionization source electrical isolation began to degrade
 - Poor beam optics as a result but we still collected some data
- Optimized on ¹³³Cs²⁰⁺ using oxygen support gas and 250 W at 10.44 GHz
- Cs+ beam current was 62 enA
- Also tried two-frequency heating
 - 175 W at 10.44 GHz
 - 75 W at 12.27 GHz

Charge state	Single Frequency Efficiency	Two Frequency Efficiency
16+	0.9	1.4
18+	1.0	1.5
20+	2.4	2.9
23+	0.5	1.1

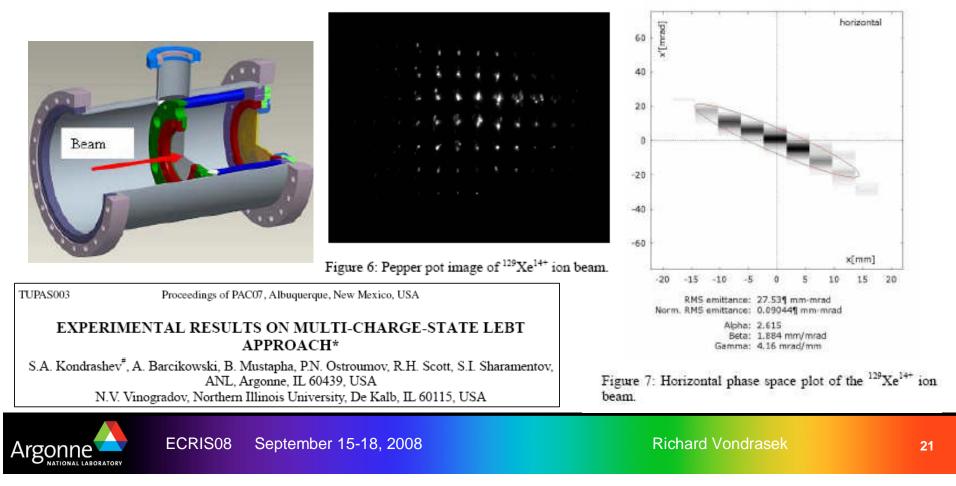
Charge bred rubidium beam

- Mass spectrum of ECR ion source output with and without Rb+ injection
 - Charge bred rubidium is in red
 - Source background, with Rb+ injection stopped by electrostatic steerer, is shown in brown
 - Source background, with Rb+ injection stopped by faraday cup, is shown in green

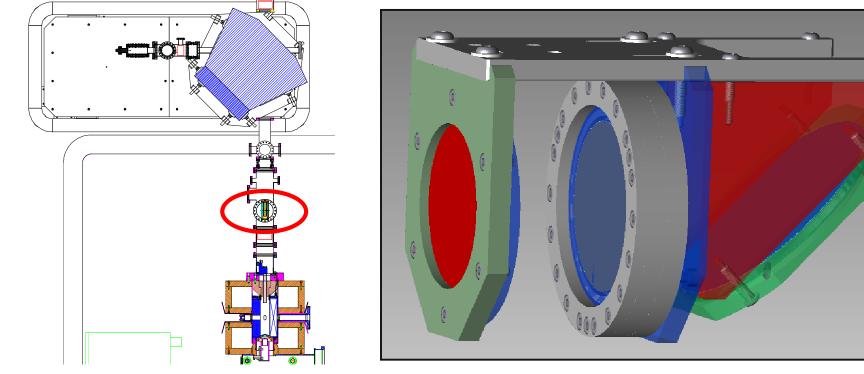
IONAL LABORATOR

Results of charge bred rubidium

Charge state	Efficiency
10+	0.7
11+	0.8
13+	1.8
15+	3.6
17+	0.8

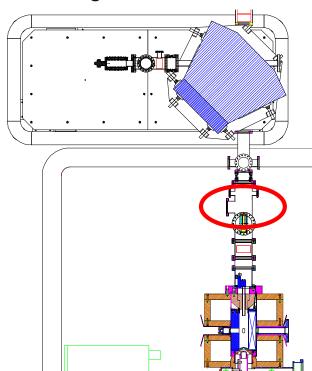

Optimized on ⁸⁵Rb¹⁵⁺ with oxygen support gas and 270 W at 10.44 GHz

"Pepper Pot" emittance system on 2Q-LEBT


- Mask has 100, 100 µm pinholes, 3 x 3 mm spacing, working area: 27 x 27 mm
- Behind mask is CsI crystal (n80 mm) which is viewed by CCD camera
- Beam energy of 75 keV/q and current density of <1.0 eµA/cm² with Bi beam

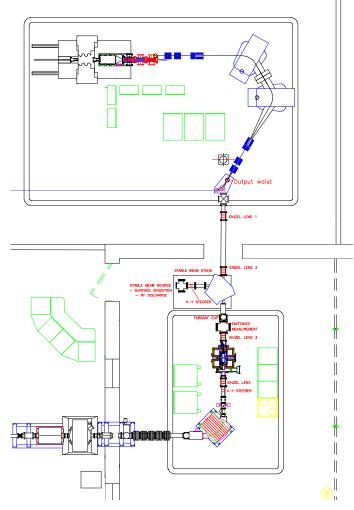
See Sergei Kondrashev's talk on Thursday morning

"Pepper Pot" emittance system for ECR charge breeder


- Mask has 20 µm laser drilled holes, 0.5 x 0.5 mm spacing, 40 mm diameter
- Behind the mask is a CsI crystal (n40 mm)
 - Scintillator tested with a 300 nA, 10 kV beam
- Distance between the mask and the scintillator is variable
- Improved sensitivity possible with the addition of a micro channel plate/phosphor
- System is under construction

New fully rear-shielded faraday cup

- Presently using a standard Thermionics faraday cup
- The back of the charge collection cup is not shielded and "sees" the beam coming from the injection side of the ECRCB
 - This means we have to shut off the ECRCB to measure the 1+ beam current
- New cup design is fully shielded and will allow beam measurements without turning off ECRCB



The CARIBU project - status

- High voltage platform and shield cask are complete
- Isobar separator magnets are in final testing
 - Shipment is expected in October
 - Focusing elements are complete
- Gas catcher construction is nearing completion
- ECRCB commissioning is complete
- CARIBU operation ramps up in 3 steps
 - First ²⁵²Cf source 3 mCi shipped last week
 - Second source 80 mCi, order placed to ORNL
 - 1.0 Ci source for full operation will not be available until at least September, 2009
 - US production awaits funding from Congress
- The CARIBU project can be commissioned with the 80 mCi source. The goal is to complete commissioning by March 31, 2009.

Future plans for the charge breeder

- Continue with beam development using rubidium source
 - More work with multiple frequency heating
- Install RF discharge source to develop source performance with gases
- Replace stainless steel transfer tube with one made of soft iron and nickel coated
 - Improves magnetic field on injection side of ECRCB
- Improve pumping at injection region
 - Have seen some evidence that a lower pressure will improve the efficiency
 - Recently modified the chamber to accept another turbo pump
- Eliminate sources of outgassing
 - Bake out the 1+ transport line
 - Beamline collimators to inhibit backstreaming into ECRCB
- Pursue cleaning of plasma chamber using high pressure rinsing
 - Background is not yet a critical issue, but will become more important as CARIBU comes on line

