New Configuration and Results with the LPSC Charge Breeder

Thierry Lamy, Julien Angot, Christian Fourel, Thomas Thuillier

Laboratoire de Physique Subatomique et de Cosmologie
CNRS-IN2P3/UJF/INP Grenoble

Experimental setup
Light and heavy ions charge breeding
Booster ‘improvements’
14 GHz results with the new configuration
18 GHz results
Preliminary 14+18 GHz frequency mixing
Experimental setup (1)

New Configuration and Results with the LPSC Charge Breeder

H-V Emittancemeters

n+ Faraday Cup

Double Einzel lens

1+ Faraday Cup

Double cylindrical lens

n+ spectrometer

ECR Charge State Booster

PHOENIX Booster

H-V Emittancemeters

Vertical pulsation

Einzel lens

1+ source
Allison type 1+ and n+ Emittance meters

Example natural Kr^{1+} isotopes
Delivered by the 2.45 GHz Monobob source
(GANIL-SPIRAL2)
New Configuration and Results with the LPSC Charge Breeder

Experimental setup (3)
New Configuration and Results with the LPSC Charge Breeder

Experimental setup (4)

1+ Beam From TIS

n+ Beam to acceleration

Well known ECR technology
simplicity
Cw or pulsed operation

Optical adaptation
Deceleration
ECR Plasma capture and Ionization

SIMION 3D Calculations
New Configuration and Results with the LPSC Charge Breeder

Experimental setup (5)

The potential difference between the 1+ and the n+ sources permit the capture
New Configuration and Results with the LPSC Charge Breeder
Light and heavy ions charge breeding (1)

Thermoionization source

1+ beam line
Rubidium

\[^{85}\text{Rb}^{1+} \]

\[^{85}\text{Rb}^{15+} (+ \text{O}_2 \text{ gas}) \text{ 3.6} \% \text{ 70 ms}, (\text{We had before, 5} \% , 225 \text{ ms}) \]

The tuning of the booster may depend on the isotope half life

\[^{74}\text{Rb} \text{ 64.9 ms} \]
\[^{82}\text{Rb} \text{ 1.273 m} \]
New Configuration and Results with the LPSC Charge Breeder

Light and heavy ions charge breeding (3)

Sodium beam

$^{23}\text{Na}^{6+}$ (+ He gas) 1.9 % 50 ms
New Configuration and Results with the LPSC Charge Breeder
Light and heavy ions charge breeding (4)
New Configuration and Results with the LPSC Charge Breeder

Light and heavy ions charge breeding (5)
New Configuration and Results with the LPSC Charge Breeder
Booster ‘improvements’
Cooling tests of the double frequency plasma chamber

New double frequency plasma chamber
Cooling between inner and outer cylinder
IR camera: FLIR ThermaCam E45

Plasma chamber fully cooled down in 25 ms
New Configuration and Results with the LPSC Charge Breeder

Booster ‘improvements’

Booster Body (grounded)

Central insulator, e = 3mm (2 parts) 60 kV: OK

Extraction side

Insertion central insulator 1

Recouvrement (1 et 2): 100 mm

Remember: central core of the Booster (HT) To be inserted into the insulator
New Configuration and Results with the LPSC Charge Breeder
Booster ‘improvements’

Hexapole magnetization check

A slight demagnetization at the injection 8 kG on the poles (nominal)

Hexapole insertion
Into the central insulator

Plasma chamber insertion
Into the hexapole
New Configuration and Results with the LPSC Charge Breeder

Booster ‘improvements’

Magnetic plug injection insertion

Efficient and fast worker
(Julien not contaminated)
6 screws to tighten

Magnetic plug extraction insertion
6 screws to tighten

Booster ready to land!
New Configuration and Results with the LPSC Charge Breeder

Booster ‘improvements’

- Vue nez extraction
- Montage alumine extraction
- Montage butée Permaglass
- Vue support tube ralentisseur
- Fixation alumine injection
- Fixation alumine extraction
New Configuration and Results with the LPSC Charge Breeder

Preliminary results

Booster opened many times (high drain current on power supply)

@14 GHz the Eff. Yield $^{85}\text{Rb}^{13+}$ after the modifications 2%

@18 GHz: Eff. Yield $^{85}\text{Rb}^{13+}$ 1% (after 1 hour)

After 1 week drying
New Configuration and Results with the LPSC Charge Breeder

Preliminary results

1.3% at best after 3 hours experiment
‘slight’ effect of frequency mixing
At least no drama…!