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ECR Charge Breeder produces highly charged ions by

injecting low charge state ions into ECR heated plasma.
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FAR-TECH is developing an integrated suite of codes for
ECR CB modeling and optimization.

ECR CB involves three distinctive regions with different processes

FAR-TECH’s Suite of Codes for ECR Charge Breeder Modeling

MCBC GEM IonEx
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ECR heated plasma region is modeled by
Generalized ECRIS Modeling (GEM).

GEM models fluid ions, Fokker-Plank electrons, and
particle balance neutrals.

FAR-TECH’s Suite of Codes for ECR Charge Breeder Modeling

MCBC GEM IonEx
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For beam injection region
the dynamics of injected ions into plasma is

modeled by a particle tracking code,
Monte Carlo Beam Capture (MCBC).

FAR-TECH’s Suite of Codes for ECR Charge Breeder Modeling

MCBC GEM IonEx
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In the beam extraction region,
beam optics is modeled by IonEx.

IonEx uses an innovative algorithm
“particle in cloud-of-points” (PICOP).

FAR-TECH’s Suite of Codes for ECR Charge Breeder Modeling

MCBC GEM IonEx
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GEM
Generalized ECRIS Modeling Code
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GEM models ECR plasmas, where electrons are ECR

heated and magnetic-mirror trapped.
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GEM 2D(r,z) includes (r,z) dependance for rf resonance zone.

Resonance condition: rf=e|B|/mc

Color contours of |B|
- full 3D

rf resonance surface

Color contours of |B|
- 2D approximated

rf resonance surface

Radial dependence of resonance
surface represented!

– IMPORTANT!r=0

r=0.04
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GEM 2D(r,z) grids

r: radial position of, azimuthally averaged, B-field flux tubes
z: axial coordinate

r=0

r= 2.4cm
r= 2cm

The r values are on the midplane
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GEM models dynamics of

(1) Fokker-Plank electrons,

(2) fluid ions, and

(3) particle balanced neutrals.
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Electron Modeling: Non-Maxwellian electrons are modeled by

Fokker-Planck, Bounce-averaged in the magnetic mirrors.

Mirror trapped
electrons in ECRIS
are collisionless.

Bz

z

ECR EDF is Non-Maxwellian
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EDF fe(v,;r,z) is mapped from fe(vmid,mid ;rmid, zmid)

Magnetic field lines
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 zvf e ,,EDF at any axial location is related with EDF on midplane
through energy and magnetic momentum conservation.

A 0D bounce-averaged FokkerPlanck code , FPPAK94* , is used to
calculate EDF on midplane by solving Fokker-Planck equation.

*
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Ion Modeling: fluid ions with radial and axial transport

• The 2D ion continuity equation is solved using upwind method:
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• Ions are cold, Ti~1 eV, and highly collisional
– Mean free paths much shorter than device
– Ions all have same axial speed
– Radial and azimuthal speed are different for each ion.

• 2D (r,z) 2V (v,  EDF used to calculate ionization rates:
– A+n + e-  A+n+1 + 2e-

• Ion loss rate is limited by electron confinement in magnetic mirror.
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IONS:
Cold and highly collisional:
Fluid ion model

ELECTRONS:
bounce time << collision time:
1D bounce-averaged for each flux surface
Fokker-Planck electron code fe(v,; r,z)

NEUTRALS:
Unimpeded by magnetic fields:
Density profile determined by particle balance

Summary of GEM model
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Using experimental “knobs” as input, GEM predicts features observed in ECRIS.

Improved agreement with measured CSD by GEM 2D.

ANL ECR-I data

GEM 1D

GEM 2D

Charge State Distribution (CSD)ANL ECR-I Run input parameters

1.2·10-7 torrGas Pressure

oxygenIon Species

323 Wrf Power

10 GHzrf Frequency

4.5 & 3Mirror Ratios

3 cmPlasma Radius
(mid plane)

4 cmRadius

29 cmLength
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GEM 2D predicts hollow electron density profiles in device,

peaking at rf resonance region
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GEM 2D predicts hollow electron temperature profiles of

plasma, peaking at rf resonance region
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GEM 2D predicts hollow CSD of extracted ion sources,

similar to experimental observations.

ANL ECR-I data

r= 0

r= 2cm

r= 2.4cm

J
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Experimental evidence of hollow profiles; X-ray image

of ATOMKI-ECRIS.

From ICIS03 talk
(and RSI 2004) by

S. Biri, A. Valek,T.
Suta, E. Takács, J.

Pálinkás, B.
Radics,J. Imrek, B.

Juhász, L.T. Hudson,
Cs. Szabó

X-ray image and profiles in
‘pole’ and ‘gap’ directions:

ATOMKI-ECRIS, Hungary

X-ray fluence ~ f (q, ne, Te )

pole

gap
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Experimental evidence of hollow profiles; X-ray image

of ATOMKI-ECRIS.

From ICIS03 talk
(and RSI 2004) by

S. Biri, A. Valek,T.
Suta, E. Takács, J.

Pálinkás, B.
Radics,J. Imrek, B.

Juhász, L.T. Hudson,
Cs. Szabó

X-ray image and profiles in
‘pole’ and ‘gap’ directions:

ATOMKI-ECRIS, Hungary

X-ray fluence ~ f (q, ne, Te )

pole

gap
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MCBC
Monte Carlo Beam Capture Code
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MCBC tracks injected beams until thermalized by plasma.

Vextract

Grounded tube

ECR Plasma

Grounded
electrode

1+ ion beam
n+ ion beam

Microwaves

Magnetic field lines



24

MCBC is a Monte Carlo particle tracking code in plasma

• Runge-Kutta orbit tracing

• Coulomb collisions treated as continuous force

– Long range Coulomb force modeled with modified Boozer form*

– Continuous drag force plus random velocity step

• Other collisions treated with rejection method

– Ionization (key atomic process: DI, AU, Double Ionization, …)
EDF is far from Maxwellian
Ionization rates evaluated using Fokker-Plank calculation

– Charge exchange (small but included)

– Recombination (small, neglected, easy to include)

*A. H. Boozer, Phys. Plasmas 9, 4389 (2002)
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ne=1.3 e11/cm3

Slowing down of beam ions by plasma
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Velocity distribution function of beam ions

Initial beam

After thermalization

Beam ions slowed down and are thermalized mainly by

Coulomb collisions with plasma ions
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Drag by the background plasma ions is mostly

due to ion-ion Coulomb collisions

• For our parameters,
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Maximum drag due to ion-ion collision occurs
when vi,beam ≈ vth,i-plasma
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ECR CB Optimization Example

Using MCBC and GEM 1D

Ar1+ ion beam injected into
oxygen background plasma
using ANL ECR-I parameters

Goal: Optimize beam energy
for maximum Ar8+ production
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• When a MCBC beam ion slows to
the ion thermal speed in the
plasma, it is considered “captured”

• Distribution of captured ions used
as source profile in GEM

Distribution of captured ions

MCBC

x
(m

)
Beam ions are either captured, pass through, or lost

Input ion
sources for

GEM
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Beam energy 5eV
above sheath potential 15eV 30eV

Beam capture near the center of the plasma yields better CB

• Reduces backstreaming
• Reduces pass through
• Increases confinement time
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<- best

CurrentBeam
IonsCapturedofCurrentExtracted

efficiencybreedingCharge 

CB efficiency optimization for Ar8+ wrt injected beam energy
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Summary up to this point

• Beam capture near the center for optimum beam extraction

• Higher rf power provide larger central potential dip
– Modify beam capture locations (further towards extraction)

– Tends to increases optimum beam energy required

• Higher rf power provide larger electron density, more
temperature (large) – more peaked profiles – may produce
higher flux

• Back flow is not small
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IonEx
Ion Extraction Modeling Code
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IonEx models beam trajectories in the extraction region

ECR Plasma

1+ ion beam
n+ ion beam

Microwaves
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36

IonEx uses innovative technique to model beam trajectories in

ion extraction region

• Ion beam trajectories depends sensitively on the shape of the “plasma meniscus”
• Meniscus is much smaller than extraction optical region
• Adaptive techniques are required for accurate modeling in reasonable run time

• IonEx uses innovative Particle-In-Cloud-Of-Points (PICOP) technique
– Only points/nodes used in computation
– No need to define cells
– Easily adapts to complex geometries
– Can handle strong anisotropy

• Potentially much faster than standard adaptive mesh techniques
– 3D mesh generation can take days for complicated geometry
– Point generation is simple
– Adaption is easy as no need to redefine cells when points are added or

removed
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IonEx models ion particles (kinetic) and
Boltzmann electrons (fluid)

• Ions
– Ions are tracked in self-consistent electrostatic fields and static B- fields
– Charge densities are distributed over “neighborhood” of points
– Electric fields are calculated from potentials at neighborhood points

• Electrons
– Low mass electrons have the Boltzmann distribution

• Point/node locations adapted based on density and potential
gradients to obtain self-consistent, steady state solution,
accurately and fast.
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Sample IonEx ECRIS extraction region simulation with resolved

plasma sheath

Plasma and electrode parameters:

0650006506320+11202.24 x
1017

Φ2(V)Φ1(V)0 (V)Ui (eV)Zimi (amu)Te (eV)n0 (m-3)

z

0

r

Electrode 1 Electrode 2

p
la

sm
a

Short Debye length: cm2μm70  LD

Meniscus

Ion trajectories & equipotentials Point Locations



39

IonEx resolves beam focal region, sharp corner of electrodes as well

as plasma sheath

70 2D m L cm  

06000060503100+1401001.0x 1016

Φ2(V)Φ1(V)f0 (V)Ui(eV)Zimi (amu)Te (eV)n0 (m-3)

 m

m
10X
zoom

743 2D m L cm   

≈200 μm
radius

≈10 μm
resolution

400 x 400 μm
zoom

Focal
point
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IonEx is benchmarked against IGUN[1]

0 40 80 120 160 200 240 280 320 360 400 440

IGUN-7.031(C)R.Becker - RUN 03/09/07*006, file=ecris2.in
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0 40 80 120 160 200 240 280 320 360 400 440

IGUN-7.031(C)R.Becker - RUN 02/21/07*050, file=ecris3.in
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0 V60000 V

[1]: R. Becker and W.B. Hermannsfeldt, “IGUN-A program for the simulation of positive ion extraction including
magnetic fields,” Rev. Sci. Instrum., 63 (4), 2756 (1992)

← IonEx

94,000 rectangular grid

15,000 nodes 11,670 nodes

← IGUN

IonEx spatial resolution near the focal point was ~10 μm.

IonEx used 11,670 nodes. (cf. over 2M modes required in rectangular grid for the
same resolution.)
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B-field is implemented in IonEx. IonEx conserves total

energy and the cannonical momentum.

0B

0B
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Towards 3D simulations: 3D shape, points and

trajectories

Boundary (red) and interior points

3D particle trajectory
(test)
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IonEx GUI implementation started
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Summary:
End-to-End Integration of ECR Charge Breeder Modeling underway

FAR-TECH’s Suite of Codes for ECR Charge Breeder Modeling is underway.

MCBC – Full 3D3V particle tracking in plasmas

GEM – GEM 1D has improved convergence
- GEM 2D starts producing results
- Hybrid model (fluid ions and bounce averaged FP electrons)

allows more realistic simulations with affordable computer time
- Many aspects yet to be implemented- eg. plasma-wall interaction

IonEx – Innovative meshfree technique
- potentially faster and more accurate modeling, in particular 3D
- 2D IonEx is benchmarked with IGUN
- 3D IonEx is underway
- B-field is implemented
- Memory is optimized
- GUI implementation is started
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Future Work

• Complete 2D extension of GEM

• Complete 3D IonEx

• Validate, validate, and validate!


