

FAR-TECH's ECR Charge Breeder Simulation Toolset – MCBC, GEM, IonEx*

Jin-Soo Kim, Liangji Zhao, Brian Cluggish, I. Nick Bogatu, S. Galkin, L. Grubert FAR-TECH, Inc. and Richard Pardo, ANL

September 16, 2008 Prepared to ECRIS08

* Supported by the DOE SBIR program

FAR-TECH, Inc., 3550 General Atomics Court, MS 15-155, San Diego, CA 92121 Tel: (858) 455-6655, Fax (858) 450-9741 www.far-tech.com

ECR Charge Breeder produces highly charged ions by

injecting low charge state ions into ECR heated plasma.

FAR-TECH is developing an integrated suite of codes for ECR CB modeling and optimization.

ECR CB involves three distinctive regions with different processes

FAR-TECH's Suite of Codes for ECR Charge Breeder Modeling MCBC GEM IONEX

ECR heated plasma region is modeled by Generalized ECRIS Modeling (GEM).

GEM models fluid ions, Fokker-Plank electrons, and particle balance neutrals.

FAR-TECH's Suite of Codes for ECR Charge Breeder Modeling

For beam injection region the dynamics of injected ions into plasma is modeled by a particle tracking code, Monte Carlo Beam Capture (MCBC).

FAR-TECH's Suite of Codes for ECR Charge Breeder Modeling

In the beam extraction region, beam optics is modeled by IonEx. IonEx uses an innovative algorithm "particle in cloud-of-points" (PICOP).

FAR-TECH's Suite of Codes for ECR Charge Breeder Modeling

Generalized ECRIS Modeling Code

GEM models ECR plasmas, where electrons are ECR heated and magnetic-mirror trapped.

GEM 2D(r,z) includes (r,z) dependance for rf resonance zone.

GEM 2D(r,z) grids

- r: radial position of, azimuthally averaged, B-field flux tubes
- z: axial coordinate

Magnetic field lines

GEM models dynamics of
(1) Fokker-Plank electrons,
(2) fluid ions, and
(3) particle balanced neutrals.

Electron Modeling: Non-Maxwellian electrons are modeled by

Fokker-Planck, Bounce-averaged in the magnetic mirrors.

EDF $f_e(v,\theta;r,z)$ is mapped from $f_e(v_{mid},\theta_{mid};r_{mid},z_{mid})$

EDF at any axial location $f_e(v, \theta, z)$ is related with EDF on midplane through energy and magnetic momentum conservation.

A 0D bounce-averaged FokkerPlanck code , FPPAK94* , is used to calculate EDF on midplane by solving Fokker-Planck equation.

*

Ion Modeling: fluid ions with radial and axial transport

- Ions are cold, Ti~1 eV, and highly collisional
 - Mean free paths much shorter than device
 - lons all have same axial speed
 - Radial and azimuthal speed are different for each ion.
- 2D (r,z) 2V (v, θ) EDF used to calculate ionization rates:
 A⁺ⁿ + e⁻ → A⁺ⁿ⁺¹ + 2e⁻
- Ion loss rate is limited by electron confinement in magnetic mirror.
- The 2D ion continuity equation is solved using upwind method:

$$\frac{\partial n_{j,q}}{\partial t} = S_{j,q}^{in} - S_{j,q}^{out} - \frac{1}{A_z} \frac{\partial}{\partial z} \left[A_z n_{j,q} u_{j,q} \right] - \frac{1}{r} \frac{\partial}{\partial r} \left[r n_{j,q} v_{j,qr} \right]$$

Summary of GEM model

IONS: Cold and highly collisional: Fluid ion model

ELECTRONS: bounce time << collision time: 1D bounce-averaged for each flux surface Fokker-Planck electron code f_e(v, θ; r,z)

NEUTRALS: Unimpeded by magnetic fields: Density profile determined by particle balance

Using experimental "knobs" as input, GEM predicts features observed in ECRIS. Improved agreement with measured CSD by GEM 2D.

GEM 2D predicts hollow electron density profiles in device, peaking at rf resonance region

GEM 2D predicts hollow electron temperature profiles of

plasma, peaking at rf resonance region

GEM 2D predicts hollow CSD of extracted ion sources,

similar to experimental observations.

ANL ECR-I data

Experimental evidence of hollow profiles; X-ray image of ATOMKI-ECRIS.

Experimental evidence of hollow profiles; X-ray image of ATOMKI-ECRIS.

-TECH

15

Radial distance (mm)

20

25

30

Monte Carlo Beam Capture Code

MCBC tracks injected beams until thermalized by plasma.

MCBC is a Monte Carlo particle tracking code in plasma

- Runge-Kutta orbit tracing
- Coulomb collisions treated as continuous force
 - Long range Coulomb force modeled with modified Boozer form*
 - Continuous drag force plus random velocity step

• Other collisions treated with rejection method

- Ionization (key atomic process: DI, AU, Double Ionization, ...)
 EDF is far from Maxwellian
 Ionization rates evaluated using Fokker-Plank calculation
- Charge exchange (small but included)
- Recombination (small, neglected, easy to include)

*A. H. Boozer, Phys. Plasmas 9, 4389 (2002)

Slowing down of beam ions by plasma

Beam ions slowed down and are thermalized mainly by

Coulomb collisions with plasma ions

Drag by the background plasma ions is mostly due to ion-ion Coulomb collisions

• For our parameters,

$$\frac{v_{i-i}}{v_{i-e}} \approx Z^4 \left(\frac{T_e}{T_i}\right)^{3/2} \left(\frac{m_e}{m_i}\right)^{1/2} >> 1$$

Maximum drag due to ion-ion collision occurs when v_{i,beam} ≈ v_{th,i-plasma}

ECR CB Optimization Example

Using MCBC and GEM 1D

Ar1+ ion beam injected into oxygen background plasma using ANL ECR-I parameters

Goal: Optimize beam energy for maximum Ar8+ production

- When a MCBC beam ion slows to the ion thermal speed in the plasma, it is considered "captured"
- Distribution of captured ions used as source profile in GEM

Beam capture near the center of the plasma yields better CB

- Reduces backstreaming
- Reduces pass through
- Increases confinement time

CB efficiency optimization for Ar⁸⁺ wrt injected beam energy

GEM 1D obtained plasma steady states for P_{rf} = 323W and 750W

Summary up to this point

- Beam capture near the center for optimum beam extraction
- Higher rf power provide larger central potential dip
 - Modify beam capture locations (further towards extraction)
 - Tends to increases optimum beam energy required
- Higher rf power provide larger electron density, more temperature (large) – more peaked profiles – may produce higher flux
- Back flow is not small

Ion Extraction Modeling Code

IonEx models beam trajectories in the extraction region

IonEx uses innovative technique to model beam trajectories in

ion extraction region

- Ion beam trajectories depends sensitively on the shape of the "plasma meniscus"
- Meniscus is much smaller than extraction optical region
- Adaptive techniques are required for accurate modeling in reasonable run time
- IonEx uses innovative Particle-In-Cloud-Of-Points (PICOP) technique
 - Only points/nodes used in computation
 - No need to define cells
 - Easily adapts to complex geometries
 - Can handle strong anisotropy
- Potentially much faster than standard adaptive mesh techniques
 - 3D mesh generation can take days for complicated geometry
 - Point generation is simple
 - Adaption is easy as no need to redefine cells when points are added or removed

IonEx models ion particles (kinetic) and Boltzmann electrons (fluid)

• lons

- Ions are tracked in self-consistent electrostatic fields and static B- fields
- Charge densities are distributed over "neighborhood" of points
- Electric fields are calculated from potentials at neighborhood points

Electrons

- Low mass electrons have the Boltzmann distribution

$$n_e = n_0 \exp\left[\frac{e(\phi - \phi_0)}{T_e}\right]$$

 Point/node locations adapted based on density and potential gradients to obtain self-consistent, steady state solution, accurately and fast.

Sample IonEx ECRIS extraction region simulation with resolved

plasma sheath

Plasma and electrode parameters:

<i>n</i> ₀ (m ⁻³)	T _e (eV)	<i>m_i</i> (amu)	Z_i	Ui (eV)	$\phi_0(V)$	Φ1(V)	Φ2 (V)
2.24 x 10 ¹⁷	20	1	+1	20	65063	65000	0

Short Debye length: $\lambda_D \approx 70 \mu m \ll L \approx 2 cm$

Ion trajectories & equipotentials

IonEx resolves beam focal region, sharp corner of electrodes as well

as plasma sheath

 $\lambda_D \approx 743 \mu m < L \approx 2 cm$

<i>n₀</i> (m ⁻³)	T _e (eV)	<i>m_i</i> (amu)	Z_i	<i>Ui</i> (eV)	$f_{_{O}}(\vee)$	Φ1(V)	Φ2(V)
1.0x 10 ¹⁶	100	40	+1	100	60503	60000	0

IonEx is benchmarked against IGUN[1]

IonEx spatial resolution near the focal point was ~10 µm.

IonEx used 11,670 nodes. (cf. over 2M modes required in rectangular grid for the same resolution.)

94,000 rectangular grid

[1]: R. Becker and W.B. Hermannsfeldt, "IGUN-A program for the simulation of positive ion extraction including magnetic fields," *Rev. Sci. Instrum.*, 63 (4), 2756 (1992)

B-field is implemented in IonEx. IonEx conserves total energy and the cannonical momentum.

Towards 3D simulations: 3D shape, points and

trajectories

Figure 1: A sketch of 3D ECRIS inner volume and boundaries

Boundary (red) and interior points

3D particle trajectory (test)

Figure 12: Trajectories (red circles) of Several Particles, a bottom half of the 3D boundary is shown

IonEx GUI implementation started

IonEx: Ion Extract	on Code by FAR-TECH, Inc.	_ 🗆 ×
File Edit Run Tools Help		
) 🔎 🔲 🥥 🗶 🔍 🔇		
Parameters Geometry Maximum # of Points 3000 Initial Ion Energy 10 eV Electrode1 Potential -503 V Electrode2 Potential -60503 V B0 a b 20 Magnetic Field 1 1 0 Initial Time 0 ms Number of Species 2 2 Particle Density % 70 30 Atomic Mass 2 2 Charge +1 +2 Initial Temperature 20 20 Maximum Time .2 .1		
	Iteration 1 Error: -	95883

Summary: End-to-End Integration of ECR Charge Breeder Modeling underway

FAR-TECH's Suite of Codes for ECR Charge Breeder Modeling is underway.

MCBC – Full 3D3V particle tracking in plasmas

- **GEM GEM** 1D has improved convergence
 - GEM 2D starts producing results
 - Hybrid model (fluid ions and bounce averaged FP electrons) allows more realistic simulations with affordable computer time
 - Many aspects yet to be implemented- eg. plasma-wall interaction
- IonEx Innovative meshfree technique
 - potentially faster and more accurate modeling, in particular 3D
 - 2D IonEx is benchmarked with IGUN
 - 3D IonEx is underway
 - B-field is implemented
 - Memory is optimized
 - GUI implementation is started

Future Work

- Complete 2D extension of GEM
- Complete 3D IonEx
- Validate, validate, and validate!

