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Conceptual Design for 56 GHz

• ECR physics and scaling
• Superconducting Magnet Technology

• NbTi and Nb3Sn
• Lorentz force and clamping
• Magnet design

• Other Challenges at 56 GHz
• Next step
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Evolution of High Charge State ECR ion sources
• In the Beginning Supermafios in 1974-1977

• First generation 6 to 10 GHz sources
– Minimafios, ECRVIS , LBL ECR, RT-ECR, SC-ECR …

• Second generation 14 to 18 GHz
– CAPRICE, AECR-U, ………
– RIKEN 18 GHz
– SERSE 18 GHz Superconducting
– A-PHOENIX
– GTS 18 GHz Grenoble

• Third Generation 20 to 35 GHz
– VENUS Operating at 28 GHz Berkeley
– SECRAL Operating at 18 GHz Lanzhou
– MS-ECRIS Under construction for 28 GHz for FAIR
– RIKEN SC-ECR Under construction for 28 GHz for RIBF
– MSU-NSCL SUSI Under commissioning at 18 GHz

• Fourth Generation 40 to 60 GHz--Future

Generation 2.5
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Frequency scaling ne ~ rf
2Frequency scaling ne ~ rf
2

Becr =me rfBecr =me rf

qeqe

Confinement criterion 28 GHz 56 GHz

Bconf ≥2 Becr

Binj ~3 - 4 Becr on axis

Brad ≥ 2 Becr on the walls 2 T 4 T

Bmin ~ 0.5-0.8 Becr on axis

at walls 2 T 4 T

ECR ResonanceECR Resonance Becr (in T)= frf(in GHz)
28

3-4 T 6-8 T

I  rf
2/M

Standard Model for ECR ion sources
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High intensity uranium performance
14 and 28 GHz operation

8/1/2006 VENUS (spectrum)

Comparison of the highest intensity uranium beam
obtained with VENUS to other sources

0

50

100

150

200

24 26 28 30 32 34 36 38 40 42

Uranium AECR-U (LBNL)

U sputtering ECR2 (ANL)A
na

ly
ze

d
C

ur
re

nt
[e

µA
]

Charge State

(14 GHz)

(14 GHz)

(28 GHz)



Claude Lyneis ECRIS 08 7

SECRAL*, IMP, Lanzhou, China

3.7 T axial, 2 Tesla radial

Solenoid-in-Sextupole

In operation at 18 GHz
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VENUS 28 GHz

Achieved magnetic fields
Binj ≤4 T, Bext ≤ 3 T, Brad≤2.2 T

•

Coil #1 Coil #2Coil #3

Sextupole CoilIronAluminum

Injection
Side

Extraction
Side

Sextupole-in-Solenoid

Operating at 28 GHz
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Critical line and magnet load lines
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Some engineering current densities and material properties
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Sextupole Coil Clamping in VENUS

End Section

Aluminum

Stainless

• Stainless steel bladders pressurized
with low an indium alloy put the coils stress
• The large aluminum ring contracts
as it cools to helium temperature,
which prestress the coils.

• Magnet trained rapidly to full field
• No retraining required after warm-up
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ECRIS-56 Magnet Design Study*

• R&D conceptual design
– Magnet configurations

• Sextupole-in-Solenoid or Solenoid-in-Sextupole

– Superconducting materials evaluation
– Magnetic design optimization
– Structural design concepts

• Leverage the experience gained with VENUS
and the high field magnet program at LBNL focused on LARP**

• R&D conceptual design
– Magnet configurations

• Sextupole-in-Solenoid or Solenoid-in-Sextupole

– Superconducting materials evaluation
– Magnetic design optimization
– Structural design concepts

• Leverage the experience gained with VENUS
and the high field magnet program at LBNL focused on LARP**

*Design of a Nb3Sn magnet for 4th generation ECR ion source, S. Prestemon et
al,
Applied Superconductivity Conference, Aug 2008, to be published

** LARP LHC Advanced Research Project
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Design Decision 1
Sextupole-in-Solenoid or Solenoid-in-Sextupole for 56 GHz?

• 3 D magnetic models were made for these two coil configurations
using the designs of VENUS and SECRAL as guides.

• Sextupole-in-Solenoid minimize sextupole field but solenoid fields
exert large forces on the sextupole ends

• Solenoid-in-Sextupole minimizes solenoid field at sextupole but
requires higher sextupole field and sextupole field generates large
fields on the solenoid

• Solenoid-in-Sextupole produces local magnetic fields beyond the
critical current for Nb3Sn materials

• Therefore the design focused on Sextupole-in-Solenoid (VENUS
type)
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VENUS-56w Magnetic Model

• Sextupole-in-Solenoid
• Sextupole ends extended
• Sextupole coils cross section increased over VENUS design
• Solenoid coils moved to larger radius

• Sextupole-in-Solenoid
• Sextupole ends extended
• Sextupole coils cross section increased over VENUS design
• Solenoid coils moved to larger radius
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VENUS 56w
Closed Magnetic surfaces for 56 GHz

B= 2.1 Becr

B= Becr
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Calculated load lines for VENUS-56w

Without Bz from solenoid

With Bz

Sextupole
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Structure to prestress coils to minimize conductor movement
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Mechanical model center and end

Aluminum shell
Iron yoke
Iron pads key
Solenoid
Sextupole

Bronze Bobbin

Center End
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Axial Stress Distribution in Sextupole
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VENUS Bremsstrahlung Measurements

• Measurements of axial
bremsstrahlung at 18 and 28
GHz

• B fields are scaled by frequency
• Bmin/Becr =70%
• RF input power 1.5 kW

• Bremsstrahlung is more intense
at 28 GHz

• Much larger high energy tail at
28 GHz

• Cryostat shielding is ineffective
above 500 keV

• Mean electron energy
increases with RF frequency
Alain Girard (2000)

More shielding and
4 K cooling will be required
for 56 GHz
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VENUS (28GHz) Plasma Chamber with X-ray Shielding
and Increased Water Cooling

HV Insulator

2mm Tantalum
X-ray Shield

Aluminum Cover

Water Passage
Aluminum Plasma Chamber

Plasma electrode
Mounting Plate

Water Cooling Grooves
at the plasma Flutes

Cooling Water
Return

Plasma Wall Design and X-ray Shield Will Be A
Greater Challenge at 56 GHz
Plasma Wall Design and X-ray Shield Will Be A
Greater Challenge at 56 GHz
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Microwave Power at 56 GHz

• Gyrotrons producing at 53, 60 and 70 GHz can produce
200 kW at 100 ms pulse length.

• These can be “derated” to run cw at 30 kW
• At present there is no “laboratory scale” cw gyrotron

commercially available
• We would need laboratory industrial collaboration

• No fundamental issue, but this is an area where
development would be required.
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4th Generation ECR Ion Source

• As Geller predicted, frequency scaling promises us higher intensity and
higher charge states

• There are technical challenges, but there are no “show stoppers”
• The design and construction of a magnet structure for a 4th Generation

ECR is the most challenging task
• An “aggressive” preliminary analysis indicates construction of a 56 GHz

ECR is feasible
• Next step--An engineering design study followed by construction of a

prototype Nb3Sn ECR ion source magnet structure for 56 GHz

• A 56 GHz ECR would be a major project with worldwide impact
• Community support and interest is important to continue this project
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Back up Slides
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ECREVIS Louvain-la-Neuve circa 1983

First successful SC ECR---Designed as superconducting version of SuperMAFIOS
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MSU SC ECR 1990 to present

First vertical superconducting ECR

Most years in operation

Designed for 6 and 14 GHz

High B-mode demonstration at 6 GHz

Sextupole field too low for 14 GHz
(Quenching)
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SERSE at INFN Catania

Superconducting ECR for 18 GHz
Tested at 28 GHz

• Demonstrated frequency scaling
• I ~ f2 , from 18 GHz to 28 GHz
• P≥ 3 kW
• Optimum Brad at 28 GHz > 1.45 T
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Magnetic fields and magnet technologies
for 18, 28 and 56 GHz ECRIS

18 GHz 28 GHz 56 GHz
Binj 2-3 T 3-4 T 6-8 T
Bmin 0.5 T 0.8 T 1.6 T
Bext 1.3 T 2.0 T 4.0 T
Bwall 1.3 T 2.0 T 4.0 T

Optimum magnetic field (ECR Standard Model)

14 GHz, room temperature copper coils with iron yoke and
permanent magnet sextupole are sufficient

18 GHz, room temperature copper coils with iron yoke and
permanent magnet sextupole are at their limit

28 GHz superconducting NbTi solenoid and sextupole coils can
produce the optimum fields

56 GHz superconducting Nb3Sn solenoid and
sextupole coils will be needed

Coil #1 Coil #2Coil #3

Sextupole CoilIronAluminum

Injection
Side

Extraction
Side

?
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ECR source, Nb3Sn
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Model calculation for Venus coil configuration
for 56 GHz operation

Highest field in sextupole
12.7 T and jc = 1550 A/mm2

Within safe range for Nb3Sn



Claude Lyneis ECRIS 08 30

LARP Technology Quad – Shell (TQS)

Axial rod

Shell Key

Yoke Pad

Filler

• Aluminum shell and axial rods:
low assembly pre-load, large cool-
down gain
• Accurate control of assembly pre-
load using pressurized bladders and
keys
• Need to quantify conductor
degradation under high coil stress
 cable testing
• FEA shows that 3D effects have a
significant impact on actual coil
stresses

• The inter-coil forces for ECRIS-56 will be about 4 times
as great as for the VENUS magnet.
• The LARP technology quadrupole clamping is not directly applicable to
an ECR magnet structure.
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• Gyrotrons at 53, 60 and 70 GHz at 200 kW for 100 ms can
be run at 30 kW cw. “No problem” to extend to 50 kW cw.

• Power requirements and chamber cooling
– Total RF power ~ neV or ~ f2*V. VENUS at 1 kW/liter has not

reached the saturation power density
– The heat deposition on the plasma wall is highly non-uniform

and ‘burnout” is a concern.

• Bremsstrahlung heating of the cryostat will require more
cryocooling power.

ECRIS-56 --Other Challenges
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Electron Cyclotron Resonance Ion Source Development

Supermafios (Geller, 1974)
15 eµA of O6+

VENUS (2004)
>2000 eµA of O6+

Power consumption 3 MW

Solenoid, Sextupole, Axial Extraction

Power consumption 100 kW

Solenoid, Sextupole, Axial Extraction
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LBNL Supercon Group is the lead lab in the
development of Nb3Sn magnets and cables

Nb3Sn magnets are currently develop for LARP
(LHC Accelerator Research Program)

ECRIS-56

SC Coil SQ Quadrupole

Sub-scale Magnet Series
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Maximum magnetic field in
superconducting magnet coils

NbTi reach
LBNL (D19)

10.1 Tesla
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VENUS-56 Load line
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Electron Cyclotron Resonance and
Magnetic Confinement

• Electron cyclotron
frequency

• ecr = eB/me

• 28 GHz ~ 1 Tesla

• Magnetic mirror can trap
electrons a long the axis

Mirror confinement

High Charge ECR confinement
Minimum B configuration
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Solenoid Coils

Sextupole
Bradial = kr2

Minimum-B field Confinement

ECR Zone
Becr=rfme/e

z

r

Axial field

Radial field
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Confinement criterion

Bconf ≥2 Becr

Binj ~3 Becr on axis

Brad ≥ 2 Becr on the walls

at walls
Binj ~ 6 T

Bext= 4 T

Brad= 4 T

ECRIS-56

Fourth Generation ECR Ion Sources ECRIS-56

For a 56 GHz ECR Becr = 2 T

• Model calculations for 4th Generation source
• Choose 56 GHz (2 times 28)
• Conventional coil geometry

ECRIS-56 Magnetic field is a challenge
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