

ECRIS 2008

18th International Workshop on ECR Ion Sources Chicago, Illinois USA - September 15 - 18, 2008

L. Maunoury, C. Pierret CIMAP, Caen, France J.Y. Pacquet GANIL, Caen, France

Grand Accélérateur National d'Ions Lourds

Quertech Ingénierie Hardion

Outline

1. Framework

2. The idea - History and Principle

3. Presentation of the ECRIS

4. Case of a singly charged ECRIS - Simulations

- Experiment

5. Case of a multicharged ECRIS - Simulations

6. Conclusion

Framework

ITSLEIF Network / Task A of the JRA2 / high-quality atomic ion beams

It is the main objective of the project to create a platform for interdisciplinary research based on the use of high-quality lowenergy ion beams (from few eV up to 25 keV). *ITS LEIF* will combine the effort of 5 research infrastructures in 5 EU countries.

The Physics

Ion collisions with Atoms, Clusters, Surfaces and Biomolecules

www.its-leif.org

The Idea...

To Increase the brightness of a beam

It means...

-To decrease the emittance of the extracted beam

- To increase the ion current extracted from the source

How...

By biasing negatively the plasma electrode

Some history...

ECRIS OPTIMISATION FOR ON LINE PRODUCTION.

R. Leroy¹, J.C. Angelique², P. Bertrand¹, B. Blank³, M. Ducourtieux⁴, P. Foury¹, N. Lecesne¹, A. Lépine⁵, M. Lewitowicz¹, C.F. Liang⁶, J. Mandin¹, C. Marry¹, L. Maunoury¹, J. Mercier¹, J. Obert⁴, N.A. Orr², J.Y. Pacquet¹, P. Paris⁶, J.C. Potier⁴, J.C. Putaux⁴, E. Robert¹, M.G. Saint-Laurent¹, P. Sortais¹, A.C.C. Villari¹

GANIL, B.P. 5027, 14021 Caen Cedex, France
 LPC-ISMRa, Bld. Marechal Juin, 14050 Caen, France
 CENBG, B.P. 120, 33175 Gradignan Cedex, France
 IPN, 91406, Orsay Cedex, France
 IFUSP, C.P. 20516, 01498 São Paulo S.P., Brasi
 CSNSM, Bat 104-108, 91406 Orsay, France

Abstract

The goal of this work is to optimise the production of radioactive-ion beams with short life tin differences between classical ionisation of stable elements and radioactive ion production. Sor have been performed and the results are given. In a second part, we present some ways th performances of the source. Finally, a presentation of a new high-field source is done.

Original paper:

R. Leroy et al. "Ecris optimisation for on-line production", ECRIS'95, Riken, April 1995, Japan (1995)

The ECRIS's...

MONO1000 : singly charged ECRIS

SUPERSHyPIE : multi charged ECRIS

All permanent magnet No hexapole RF frequency => 2.45 GHz Up to 200W Coaxial _ wave guide adaptation Air cooling system Single gap extraction Plasma electrode ϕ = 7 mm Puller electrode ϕ = 10 mm

P. Jardin, RSI, 72 (2) 789 2002

Coils + permanent magnet Hexapole RF frequency => 14.5 GHz Up to 1000 W Direct RF injection Water cooling system Single gap extraction Plasma electrode ϕ = 13 mm Puller electrode ϕ = 20 mm

L. Maunoury, RSI, 72 (2) 561 2002

Simulations: General assumptions

Two software packages were chosen : SIMION3D and CPO 3D

SIMION3D	CPO 3D
Advantages	Advantage
Fast => a couple of hours Chean	Space charge effect
Easy to use	Disadvantages
Disadvantage	Slow => a couple of days Expensive
Space charge effect	Cares should be paid special attention
	when using it
=> Allow to test many configurations	=> Allow to simulate accurately few solutions

Main comparisons and results in this paper

C. Pierret et al., Preliminary results of the ion extraction simulations applied to the MONO1000 and SUPERSHyPIE electron cyclotron resonance ion sources, RSI, 79 02B703 (2008)

Case of SUPERSHyPIE

SIMION 3D

CPO 3D

Case of MONO1000

Random generation of the ions
\$\overline\$ = 15 mm
\$Plasma potential 8 eV
\$Ion energy 0.1 eV
\$Angle of emission ± 90°
\$Brightness calculated
at 65 mm from the EP

Case of SUPERSHyPIE

★Random generation of the ions
\$\overline\$ = 15 mm
★ Higher is the charge more concentrated is the distribution
★ Plasma potential 8 eV
★ Ion energy 1 eV
★ Angle of emission ± 90°
★ Brightness calculated

at 70 mm from the EP

Simulations with the MONO1000 ECRIS

Ar¹⁺ case at low energy (5/8 keV)

Ar¹⁺ case at high energy (15 keV) CPO calculations

Ar¹⁺ case at high energy (15 keV) CPO calculations

Emittance measurement method

$$x'_{j}=(x_{j}-x_{i})/L.$$

J. Mandin, PhD-Thesis, Caen University (1997)

Typical spectrum of Kr^{q+}

Typical emittance of ⁸⁴Kr⁺ beam

Vertical emittance analyzed such to have 63% of the current in the emittance

Evolution of the emittance with V_{ep} For the ⁸⁴Kr⁺ beam

Total beam => 2 $e\mu A$ of Kr^{1+}

Evolution of the relative brightness with V_{ep} for the ⁸⁴Kr⁺ beam

Simulations with the SUPERSHyPIE ECRIS

A realistic case has been chosen / only CPO results will be showed

Ar^{q+} and O^{q+} initial distribution

 I_{total} = 6.6 emA V_{extraction} = 15 kV

Evolution of the relative brightness with V_{ep} for the whole extracted beam

Evolution of the relative brightness with V_{ep} for the O^{q+} extracted beam

Evolution of the relative brightness with V_{ep} for the Ar^{q+} extracted beam

 $V_{pe}(V)$

Next experiments...

Sketch of the GTS

Will be intalled instead of the SUPERSHyPIE ECRIS

Installation e eric 145 (12=15-12009) January 2009

An experiment is planned also next year with the ATOMKI ECRIS

Test of this method applied to a multicharged ECRIS => validation or not of this technique

More studies...

From the results above, the negative bias of plasma electrode seems to be enhancing the brightness of the beam extracted from an ECRIS

BUT

Many studies should be undertaken:

✓ From the simulation point of view:

- ∽ Enhancement of the initial ion distribution (gaussian distribution, bohm criterion etc...
- Simulation of the whole test bench for a better comparison with the experiment
- ∽ Introduction of the space charge compensation
- ☞ Feedback with a large amount of data is needed

✓ From the experiment point of view:

Experiments with several multicharged ECRIS

☞ Dependency on the brightness enhancement with the Charge state, Extraction voltage, Masses, Gap between plasma electrode and puller electrode etc...

Special thanks to my co-workers Thank you

Jean Yves Pacquet GANIL CAEN

Christophe Pierret CIMAP CAEN