

### Three Dimensional Simulation of Ion Beam Extraction from an ECR Ion Source Stephen M. Elliott, Olivier Delferriere, John Simkin, Elizabeth K. White

950 Laramie Blvd, Unit D, Boulder, CO 80304, 303-884-5547, www.lamplightertechnology.com Reproduction or use prohibited without express written permission

## Introduction

- Space charge simulation of ECR extraction system
  - Accel-Decel extraction system from plasma free surface
  - Combined electric and magnetic fields
  - Beam neutralization from gas secondary electrons



950 Laramie Blvd, Unit D, Boulder, CO 80304, 303-884-5547, www.lamplightertechnology.com Reproduction or use prohibited without express written permission

# Model

- Ion emission from a free plasma surface
  - Self consistent plasma meniscus
  - Bohm current density
- Generation of secondary electrons from gas
  - Energy distribution
  - Angular distribution





### Source geometry with non-linear magnetic materials

**Iamplighter** TECHNOLOGY 950 Laramie Blvd, Unit D, Boulder, CO 80304, 303-884-5547, www.lamplightertechnology.com Reproduction or use prohibited without express written permission



Mesh





### Boundary conditions, 0, -12kV, -10kV



**er** 950 Laramie Blvd, Unit D, Boulder, CO 80304, 303-884-5547, www.lamplightertechnology.com Reproduction or use prohibited without express written permission

# Primary Charged Particle Emission

- Emission from a free plasma surface
  - Plasma free surface (specified current) type 103 emitter
    - Self consistent plasma meniscus
    - *Ion temperature much lower than electron temperature*
  - Concave to convex meniscus
  - User specified Bohm variables
    - Particle mass
    - Particle charge
    - Electron temperature
    - Meniscus voltage
    - Current density

### **Beam Interactions**

- Secondary particles
  - From gas collisions
  - From conductive surfaces
  - From lossy dielectric surfaces
    - Beam induced insulator charging
- Other behavior
  - Scattering
  - Recombination
  - Energy loss
  - Current loss



- Beam loss
  - Volume backscattered emission
    - Change current in beamlet
    - Change energy in beamlet

$$Yield \Longrightarrow \left[\frac{\partial I}{\partial s}/I\right]...(cm^{-1})$$

$$EnergyLossFactor \Rightarrow \left[\frac{dE}{ds}/E\right]...(cm^{-1})$$

where: I is primary beam current E is primary beam energy s is distance along trajectory



- Volume secondaries
  - Secondary particles created at Maximum Trajectory Step Length characteristic spacing

EmissionFraction 
$$\Rightarrow \left[\frac{dn}{ds}/(N)\right]...(cm^{-1})$$

where: N is primary beam linear density n is secondary particle linear density



**EF** 950 Laramie Blvd, Unit D, Boulder, CO 80304, 303-884-5547, www.lamplightertechnology.com Reproduction or use prohibited without express written permission

## Results

- Emission from a free plasma surface
  - Benchmarked ion beam trajectories
    - Good analytical benchmark to Child's law
    - Good benchmark to experiment with bucket source
- Magnetic field
  - Good benchmarks with non-linear materials





#### Magnetic flux density on axis



950 Laramie Blvd, Unit D, Boulder, CO 80304, 303-884-5547, www.lamplightertechnology.com Reproduction or use prohibited without express written permission



#### Plasma meniscus shape varies with current density

**Implighter** TECHNOLOGY 950 Laramie Blvd, Unit D, Boulder, CO 80304, 303-884-5547, www.lamplightertechnology.com Reproduction or use prohibited without express written permission



#### Influence of magnetic field on non-neutralized ion beam

**Solution 1 Solution 1 Solut** 



#### Influence of magnetic field on gas secondary electrons

**Solution 1 Solution 1 Solut** 



### Magnetized gas secondary electrons

lamplighter

950 Laramie Blvd, Unit D, Boulder, CO 80304, 303-884-5547, www.lamplightertechnology.com Reproduction or use prohibited without express written permission



#### Influence of gas secondary beam neutralization

**Solution Biology Biol** 



#### Influence of gas secondary beam neutralization

**Solution Biology Biol** 



#### Space charge, Coulombs/mm<sup>3</sup>

**Implighter** TECHNOLOGY 950 Laramie Blvd, Unit D, Boulder, CO 80304, 303-884-5547, www.lamplightertechnology.com Reproduction or use prohibited without express written permission



#### Influence of gas secondary beam neutralization

**Implighter** TECHNOLOGY 950 Laramie Blvd, Unit D, Boulder, CO 80304, 303-884-5547, www.lamplightertechnology.com Reproduction or use prohibited without express written permission

## Conclusions

- Suitable plasma free surface emitter
  - Good agreement to bucket source
  - Can simulate complex aperture shapes
- Secondaries from gas collisions
  - Automatic sampling with FEM
    - No PIC code
  - User controlled emission laws

**Solution Bioleteric Colored State Bioleteri**