

A Method of Tuning ECRIS Beam Transport Lines for Low Emittance, ECRIS08

On-Line version with added Notes

J. Stetson, NSCL/MSU

THE OPTICS OF TERRIBLE OBJECTS *Not So*

A highly-caffeinated overview

J. Stetson, NSCL/MSU

Top View: Compact Machines (K1200 Extraction Radius = 1 m)

K500 Injected Beam Requirements:

 Small-sized cyclotron → tight emittance requirement [calculated to be 75 pi*mm*mr]

2) K1200 Stripper \rightarrow ECRIS M/Q ~ 6

3) Production Target Shielding Limit ~ 4kW → K500 Output < 10 euA →</p>

K500 Injection Beam < 30-40 euA

4) First Orbit Radius \rightarrow 20-27 kV extraction potential

5) 22 different "beam list" isotopes → rapid and repeatable tunes required

From PAC07 (talk MXOXKI03)

"The key to high intensity and low beam losses is very careful control of injection and extraction."

Stuart Henderson, ORNL

Hardware Changes Affecting Beam Dynamics 2003-2007 (Injection line In Orange)

May 2003: Revised ARTEMIS-A Extraction Region July 2004: Problem with ARTEMIS-A Hex field 05-Sept-04: Install Small Bore Triplet (SBT) on **SC-ECR** 17-Nov-04: Install S006SX, Remove Aperture 1 7-Dec-04: Repair K12 injection & K12C3,4 Jan-05: ARTEMIS-A Permanent Magnet **Sextupole Bars Replaced** Jan-05: SBT on SCECR moved up 5" Jan-05: Buncher moved up 12" Jan-05: K8C4 Beam Scraper (0.42") Installed 16-Feb-05: remove S007AP 10-Dec-05: Double Solenoid under K500; Buncher moved down 4" 10-Jan-06 Large Bore Triplet (LBT) installed on **ARTEMIS-A** 10-Jan-06: Moved Plasma Electrode and Puller on **ARTEMIS-A**

10-Jan-06: remove R007Aperture

10-Jan-06: Installed 0.3" Vt Collimation at Full Radius on K500 K5MPSC 7-Apr-06: Add K500 Phase Slits 7-Apr-06: Add J033 4-Jaw Slits 7-Apr-06: K5MPSC Gap reduced to 0.25" 11-May-06: Reverse J046SN Polarity 12-Jun-06: Install Double Doublet System (DDS) on **ARTEMIS-A** 12-June-06: Replace Buncher grids with 1 cm dia washers 12-Jun-06: Swap R013OA/14OB with J042SN 15-Jan-07 Inflector Collimator $4.2 \rightarrow 2 \text{ mm}$ (failed, returned to 4.2 mm) 15-Jan-07: K5MPSC Gap reduced to 0.19" **15-Jan-07: Einzel Lens + LBT installed on SCECR;** remove S006SX 15-Jan-07: Water-cool K12E1D drive rod 19-Jan-07: reversed polarity of J056SN

Max Recorded Beam Intensities 2002-2006

→ Gains Largely from Injection Line improvements

Injection Line (~16.5 m) to K500

~2000: Add Aperture Plates

Less = Better

Apertures [mm]	Beam	Analyzed Beam [eµA]	K500 Inflector [eµA]	K500 Extracted [eµA]
none	16 O +3	400	159	1.1
7, 12, 25	16 O +3	36	5	1.1

(from 2003)

Viewer Plates: Aluminum Coated with Phosphor (KBr or BaF₂)

Viewer Plate Locations

The number part of the device name refers to its relative location.

The Following Movies Are Rated:

Rings of ⁵⁸Ni Charge States (Vary R009 Dipole) (ECRIS →Solenoid →Dipole →Solenoid →Viewer)

Beam Transport for ⁴⁸Ca⁸⁺

With Electrostatic Triplet

All Ions Remain Together until Magnetic Bend

Short Focusing

Beam Line is tuned to transmit a $Q/A \cong 1/6$ Beam

ECR Beams often have Q/A > 1/6 Ions of significant intensity (support gas)

Q/A > 1/6 ions are tightly focused

before reaching the analysis magnet

Beam at "short foci" creates high space-charge forces driving desired beam ions radially outwards

(from 2004)

Definitive Solenoid Test Artemis B - 2007

G. Machicoane (ICIS07)

Maximize the Good at the Expense of the Bad 50mm Triplet vs. Solenoid Case

Gains From better Tranmission

	~2003 SOURCE OUT → K1200 OUT	~2006 SOURCE OUT → K1200 OUT	GAIN
⁴⁰ Ar	2280 → 58	1920 → 222	4.5
⁴⁸ Ca	$1275 \rightarrow 32$	1400 → 160	4.6
⁷⁶ Ge	690 → 17	725 → 63	3.5
⁷⁸ Kr	2640 → 22	2760 → 79	3.4

Analyzed source beam output (in pnA) and the resulting beam intensity extracted from the K1200. The net efficiency normalized to source output has increased by about a factor of four from 2003 to 2006.

21

Problems Remain

Now: Overall beam intensities often limited to about 800W by losses in the cyclotrons at beam extraction. (Deflectors!)

Future: How to beneficially use high intensity from SUSI?

Ideal Case for Perfect Injection

Our Less-than-Ideal Situation

Close Round Aperture: 25, 17, 12, 7 mm (ECRIS →Triplet →Dipole →Quad Doublet →Viewer)

Round Cut give Triangular Beam!

"Star" Features more Evident w/o Solenoid Space Charge Issues

¹⁶O⁺³ (using Electrostatic Triplet)

(from 2004)

Highly Structured Object

X-Ray Image of Ionization Within the ECRIS

(from 2004)

S. Biri, et. al.

27

VT2 view after first Beam Line Solenoid (GSI, 2006)

ECRIS Beam has a Special "Tag"

"Rings" morph into "Stars" by varying the focusing strength of lenses.

(Simulations: This is not explained by 2nd Order Alone)

Ring to Star @ NSCL using Beam Line Solenoid (ECRIS →Double Doublet →Dipole →Solenoid →Viewer)

Image Propagation thru Injection Line

Hz Slit Scan J033XGap = 2 mm

"Should" show a narrow vertical line

Vz Slit Scan J033YGap = 4 mm

"Should" show a narrow horizontal line

Cut 90% of Intensity with J033 Slits centered on Beam

Slits are cutting only Intensity, NOT overall Emittance

(Slit half-way thru Injection Line, Viewer Just Before K500)

ECRIS Beam Characteristics

1) Transverse Structure

- 2) Large 2nd Order Aberrations (Triangle)
- 3) Strong Phase space cross-coupling (beam is correlated)
- 4) Focusing morphs Triangle into Star
- 5) Under some conditions, a fractal nature (round cut can redevelop into a triangle-star)

The Question:

Can the extracted beam be dealt with in a way that gives good 2D emittance without large correlations but with reasonable intensities?

The Surprising Answer: Yes!

A Test a of 2nd Order Correction Scheme

At NSCL (August 2007) New Analysis Dipole New, Stronger Sextupole Double-Doublet moved for 2 wks to ARTEMIS-B

In Principle, a Pi Phase advance between the source sextupole and an external sextupole should allow a full correction of the 2nd order aberrations.

A Most Useful Device (Poor Man's 4D Emittance Scanner)

Layout for August 07 ARTEMIS-B Test

Initial Explorations

- 1) Tune Optics for Maximum Intensity on Faraday Cup.
- 2) Remove Cup, Observe beam on Viewer 79 cm Downstream
- 3) Take Photo
- 4) Insert Grid (1 mm diameter holes, 4 mm apart)
- 5) Take Photo

3.AUG.2007 12:57:06 40Ar7+ 9.999 kV; VIEWER = M014VP HFST=503.131; MEXT=435.219 *A* CRXMIT1 = 300.845 W IRAIN CURRENT = 2.160 mA; 1012FC=103 muA 1020FC=25 muA

M001TA = 3.176 kV M002TB = 3.097 kV M003TC = 2.032 kV M004TD = 1.155 kV M002MC = 0.854 kV M007SX = 7.836E-003 A

M006AP = 25 mm M011AP = 50 mm M011AC = OUT

M001DH = 38.16E-003 kV M004DH = 0.071 kV M011DH = -0.504 A M001DH = 38.16E-003 kV

M001DV = 312.8E-006 kV M004DV = 8.759E-003 kV M009DS = 153.569 A M011DH = -0.504 A

More!

Without Grid

41

Interesting ...

Expanded View

Then Pi-Phase Advance Optics ... (Sextupole Off)

22-AUG-2007 16:42:32 40Ar7+ 19.999 k	/; VIEWER = M014VP
MEST- JIJ.032 A, MEXT-415.070 A,	
DDAIN CIIDDENT = 2.131 mA	
M012EC-88 muA	
M001TA = -3.437 kV	
M002TB = 3.401 kV	
M003TC = -2.930 kV	
M004TD = 2.245 kV	
M002MC = 0.452 kV	
M007SX = -23.45E-003 A	
M006AP = 25 mm	
M011AP = 50 mm	
M011AC = OUT	
M001DH = 48.49E-003 kV	
M004DH = 0.050 kV	
M011DH = 0.860 A	
M001DH = 48.49E-003 kV	
M004DV - 27 525 002 144	
MUUTUV = 27.53E-UU3 KV	
MUU4DV = -U.U64 KV	
M009DS = 133.318 A	
MUTTUH = 0.000 A	
M016SN = 85 672 A	

"Organized" Core!

Transmit Grid-Pattern to 2nd Viewer

23-AUG-2007 15:34:59 40Ar7+ 19,999 kV MFST=515.519; MEXT=419.891 A ECRXMIT1 = 299.165 W DRAIN CURRENT = 2.477 mA; M012FC=78 muA M020FC=70 muA	; VIEWER - M020VP
M001TA = -3.546 kV M002TB = 3.448 kV M003TC = -2.920 kV M004TD = 2.153 kV M002MC = 0.346 kV M007SX = -23.45E-003 A	
M006AP = 25 mm M011AP = 50 mm M011AC = GRID	
M001DH = 0.190 kV M004DH = 0.066 kV M011DH = 0.224 A M001DH = 0.190 kV M001DV = 0.196 kV M004DV = .31.59E.003 kV M009DS = 152.896 A M011DH = .0.224 A	
M0165N - 61.007 A	

Bubble Beam

Try the Sextupole (1st Viewer)

24-AUG-2007 22:35:44-40Ar7+ 20.000 kV; VIEWER = M014VP MFST=516.082; MEXT=422.206 A ECRXMIT1 = 299.165 W DRAIN CURRENT = 1.953 mA; M012FC=158 muA M020FC=138 muA
M001TA = .3.384 kV M002TB = 3.515 kV M003TC = .2.974 kV M004TD = 2.147 kV M002MC = 0.456 kV M007SX = .7.805E-003 A
M006AP = 25; M011AP = 50 mm M011AC = GRID
M001DH = 312.8E-006 kV M004DH = 0.199 kV M011DH = 0.181 A M001DH = 312.8E-006 kV M001DV = -625.6E-006 kV M004DV = 0.152 kV M009DS = 153.099 A M011DH = 0.181 A
M016SN = 75.881 A

Try the Sextupole (2nd Viewer)

The External Sextupole "brings in" highly aberrated beam, but doesn't affect the "core"at all(!)

→Results not as anticipated,
(Possibly due to 3rd order effects from the quads.)
However: →There seems to be a relatively intense part of the beam that is essentially
Uncorrelated(!)

Lucky Break?

The "Why" is not known, But Can this "core" effect be used?

(Ultra) Low Emittance Tune for Inj. Line Artemis-A

Magic Electrostatic Lens System:

(can give a 90 Deg Phase Advance from

ECRIS Sextupole to an External Sextupole)

National Electrostatics Corporation calls it: The "Odd Duck"

Analysis Magnet + Apertures

RF

Diagnostic Box ~J034

Beam Attenuator Plate (x 1/3)

60

Vary R001QA (Grid at R012)

Vary R004QA

64

Complication: Space Charge in Dipole?

Vary R037SN: Big + Ring-to-Star Tagged (Bad!)

(Initially) Better-Looking Tune: Open/Close R012AP

J033 Hz Slit Scan (Width = 4 mm)

J035 Emittance Scan (Apertures Open)

J035 Emittance Scan (R012AP = 12 mm)

Cutting Effectiveness

⁵⁸Ni¹¹⁺: Normal vs. Low Emittance Tune

⁵⁸Ni¹¹⁺: Emittance: High vs. Low

In the 2.1 m "almost" free drift between the focus at J035VP and J041VP, the difference in the two emittances is directly observable.

 $(^{16}O^{3+})$

Vary R037SN: Behaves as Desired (no Star/triangles)

What's Being Cut by Apertures?

What's Being Imaged / Cut by Apertures?

Note!

This central piece of beam is

not being significantly cut by apertures. There seem to be 3 similar low-emittance pieces, but on different trajectories. The apertures cut 2 of the 3 (plus a "cloud") away.

J033 Slit Cut Good

Side Benefit: Better Charge State Resolution (<1%)

(Resolving Power ~ Dispersion/Magnification)

Aside: Yes, the Octupole Works

Emittance Scanner Resolution

Position Resolution is ~0.5 mm Beam Widths > 5 mm \rightarrow Good

Emittance Scanner Resolution

Emittance Scanner Resolution

Divergence resolution ~ 6.7 mr

Summary (A) of Low Emittance Tune Tests

⁴⁰Ar⁷⁺, ⁵⁸Ni¹¹⁺, ⁷⁸Kr¹¹⁺, and ¹²⁴Xe²⁰⁺ beams

were tested and gave very similar optical results.

A bright beam core exists that has minimal, if any, cross-correlations.

This core has about 1/3 of the total beam intensity.

2D rms emittances are reduced by at least a factor of 3-5

The initial focusing element (Double Doublet) settings scale very precisely between beams and extraction HV settings.

Summary (B) of Low Emittance Tune Tests

Minimal correlations allows clean slit cuts.

Changing the plasma chamber electrode diameter from 8mm to 10mm increased both overall and "low emittance" output by 30-40%, without significantly degrading beam quality.

In the first (and, to-date, only) test with the K500, both injection and extraction efficiency were significantly improved; only 50-60% of the previous injected intensity was needed to achieve the same K500 output current.

Brightness

Intensity On A Faraday Cup That Cannot Be Injected, Accelerated, And Extracted Cleanly Is Useless (Or Worse)

Given the complicated nature of the beam structure from an ECR ion source

... how is it even remotely possible to organize (de-correlate) this beam using linear, first order, optical focusing elements?

It's not!

So it already exists (focusing and steering merely select), But Why?

?

Can the "core" be separated in systems Using solenoid or other focusing?

Can the "core" be separated by "processing" after the analysis magnet only?

An NSCL World Record?

Operating ECR Ion Sources = 4

Ion Source Group Members = 3

One Very Over-Worked Group

So, In Particular

Thanks for letting me play with Your Toys!

The Cast (Lord(s) of the Rings IV)

BEAM PHYSICS •Felix Marti •Marc Doleans •Xiaoyu Wu •Q. Zhao

ION SOURCE
Peter Zavodszky
G. Machicoane
Dallas Cole
Larry Tobos

For fun, raise R037SN: What will it do?
