ION BEAM RESEARCH AND DEVELOPMENT WORK AT JYFL

H. Koivisto, T. Ropponen, V. Toivanen, and M. Savonen

Accelerator Laboratory, Department of Physics, University of Jyväskylä

Contents

- research work to solve a serious beam transmission problem

- measurements to define the bottle-neck concerning the beam transmission (ECRIS? Beam line? Cyclotron?)
- injection voltage vs. transmission efficiency
- tests with beam viewers
- tests with quadrupoles to improve the beam profile

new metal ion beams

- bremsstrahlung results will be presented by T. Ropponen

Total transmission efficiency

From FCJ2 to the first FC after cyclotron (PFC)

Different sections

Same tendency - i.e. decrease of efficiency when the beam intensity increases - was noticed between FCJ2 and FCI5

FCJ2-> FCI5 up to 90 % FCI5-> infl. up to 90 % cyclotron up to 40 % deflector up to 60 % defl.-> PFC up to 95 %

Conclusions concerning the transmission efficiency measurements

 the efficiency decreases as a function of intensity only in the section between FCJ2 - FC5

 after the afore-mentioned section the emittance of the beam approximately equals to the acceptance of the cyclotron

Consequently, the transmission problem exists before the cyclotron but what is wrong?

Efficiency vs. injection voltage

Effect was stronger than can be anticipated from Child-Langmuir law (40 % vs. 100 %).

This indicates that the beam quality improves fast with the injection voltage

Fast degradation of beam quality with intensity due to higher space charge?

Beam profiles

Beam profile has been studied by KBr-viewers

Two problems were found:

Due to the wrong entrance/exit angle of DJ1

40 Ar 9+ / ACC 12,14 kV / max intensity at FCJ2 about 110 uA SOLJ1 75 A / SOLJ2 0 A / intensity at FCJ2 with these settings 33, 0 uAss

With high intensities

With high focusing power

40 Ar 9+ / ACC 12,14 kV / max intensity at FCJ2 about 110 uA SOLJ1 98 A / SOLJ2 0 A / This is the beam shape with maximum intensity

Test with quadrupoles

Quadrupole results

Tests with K130 cyclotron (with quadrupoles)

According to results with quarupoles a remarkable improvement in transmission efficiency was expected (remarkable decrease in emittance). But....

	I (FCJ2)	I (PFC)	Efficiency
without quadr.	52 µA	4,1 µA	7,2 %
with quadr.	66 µA	4,7 µA	7,0 %
+ ECR tuning	110 µA	7,2µA	6,5 %

Future beam transmission R & D

- explanation for the quadrupole result has to be found

- explanation for the hollow beam structure has to be found

ECRIS/beam formation/space charge effect?

- electrostatic focusing (like NSCL/MSU)?

- ECRIS closer to dipole?

- higher injection voltage: requires new central area of cyclotron

Results with the inductively heated oven

The latest version of inductively heated oven seems to be reliable in operation

Titanium (1700°C) and Chromium (1500°C) ion beams were successfully produced with the oven

In both cases the intensity level of 20 µA was reached for the medium charge states

The consumption rates: Ti (1.8 mg/h), Cr (0.5 mg/h)

Summary

1) a lot of information about the beam transmission has been gotten

 different options to solve the transmission problem will be considered: electrostatic focusing, ECRIS closer to dipole, higher injection voltage?

studies to understand the hollow beam structure (also beam formation)

3) Bremsstrahlung experiments

4) Metal ion beams

Extra 10 minutes

List of 2nd and 3rd generation ECRIS

Applications

List of 2nd and 3rd generation ECR ion sources

Lab /country	ECDIS	Burnose	
		Fulpose	
LDINL/USA		veroletron injection for 1) and 2)	
NSCL/MSU/USA	ARTEMIS-A 14 GHZ	cyclotron injection for 1)	
	ARTEMIS-B 14 GHZ	test bench for ECRIS R&D	
ANL/USA	ECR2 14 GHZ (+1 W IA)		
	ECRI, 10 GHZ	charge breeder for linac	
TAMU/USA	ECR2, 14 GHz		
	CBECRIS, 14 GHz	charge breeder	
RIKEN/Japan	RIKEN 18 GHz ECRIS	inj. for heavy ion linac and RIBF	
	Liq. He-free SC-ECRIS, 18 GHz	inj. for heavy ion linac and RIBF	
CNS Tokyo/Japan	Liq. He-free SC-ECRIS, 14 GHz	AVF cyclotron injection	
Vienna Univ./Austria	14 GHz ECIRS, all perm. Magn.	Experiments with low energy HC ions	
IMP/China	LAPECR2 (all perm magn) 12-14 GHz	multi-purpose, HV platform	
	LAPECR1 (all perm magn)12-14 GHz	4)	
The second second	LECR3, 14/18 GHz	for HIRFL cyclotrons	
	LECR2M 14/18 GHz	material physics, ECRIS R&D	
NIRS/Japan	NIRS-ECR 10 GHz	carbon ion therapy	
	NIRS-HEC, 18 GHz	carbon ion therapy	
	Kei 8/10 GHz	experimental	
	Kei2 8-11 GHz, all perm magn	source development	
Gunma Univ/Japan	KeGM 10 GHz	carbon ion therapy	
GSI/Germany	14.5 GHz Caprice	multi-purpose	
and the second second	14.5 GHz Caprice	test bench for ECRIS R&D	
the second second	Supernanogan 14 GHz (2), all	a second s	
Heidelberg/Germ.	perm.mag	carbon ion therapy	
LNS/INFN/Italy	CAESAR 14/18 GHz	inj. for K800 cyclotron	
a d	SERSE 18/(28) GHz	inj. for K800 cyclotron	
LNL/INFN/Legnaro	Supernanogan, 14 GHz, all perm magn	1)	
IDCC	DUOENIX 14 CH2	charge breeder P&D	

nuclear physics space effects testing radiobiological material and atomic physics hadron therapy

			1
			34
dd .			
alterin			1
11111	11		
a malt		4	
		_	
Ales still	T.		
- 11,	all A		
1.11	1	0	
	10		
anna la			
Contraction of the			
1 subudiets		-	
Hed M		0000000	-
1, 1, 1/1/2	AL.	and the	10
	de la	Y E	1
		and the second s	14
CHINE -		AL AND A	THE

AB Dep./CERN	GTS-LHC, 14/18 GHz		for hadron injector at CERN	
GANIL/France	ECR4, 14 GHz		1), 2), 3), 4)	
	ECR4M, 14 0	GHz	1), 2), 3), 4)	
	SUPERSHYPIE, 14 GHz		solid state physics	
	GTS 18 GH	Ηz	1)	
KVI/the Netherl.	KVI-AECR 14	GHz	cycl. (AGOR) inj. For 1) and 3)	
JYFL/Finland	JYFL-14 GHz ECRIS	S (+ TWTA)	cycl. injection for 1), 2) and 4)	
ATOMKI/Hungary	14 GHz ECF	RIS	?	
Frankfurt/Ger.	IKF-ECRIS, 14	4 GHz	4), ECRIS R&D	
JINR/Russia	DECRIS-2, 14	GHz	1)	
	ECR4M, 14 0	GHz	(1), applications	
	DECRIS-SC, 18 G	Hz hybrid	inj. for CI-100 cyclotron (applied phys.)	
all an all and	DECRIS-4, 14	GHz	at test bench, will be used for U400 cycl.	
Vinca inst./Serbia and Montenegro	MVINIS 14/18	R GHz	material modifications	
Biont/Slovak rep.	DECRIS-2M, 1	4 GHz	material modifications (nanotechn)	
Astana/Kazakhstan	DECRIS-3 14	GHz	inj. for DC-60 cycl., applied physics	
Triumf/Canada	Phoenix 14 C	GHz	charge breeding	
Kochi Univ./Japan	10 GHz NANOGAN		(10n beam lithograph)	
New Delhi/India	PKDELIS, 14/18 G	Hz, hybrid	inj. for linear accelerator	
MSL/Sweden	14 GHz Hypern	anogan	inj. synchrotron (storage ring)	
KEK-JAERI/Japan	ECRCB, 18 (GHz	charge breeder for KEK-JAERI RNB	
RCNP/Osaka/Japan	18 GHz SC-E	CRIS	inj. for cyclotron	
iThemba/South Afr	ECR4, 14 G	Hz	inj. for cyclotron	
	GTS 14/18 C	GHz	under construction	
Cancer Cent. Marburg	Supernanogan, 14 GHz	(2),perm. magn	carbon ion therapy	
TIFR/Mumbai/India	Supernanogan, 14 GHz, perm. magn		4)	
VECC/Calcuta/India	Hypernanogan, 14	18 GHz	1), 4)	-
CLRC/Daresbury/UK	PHOENIX 14/1	8 GHz	charge breeder	
CNAO/Pavia/Italy	Supernanogan, 14 GHz	(2),perm. magn	carbon ion therapy	
Oxford Instr./UK	NANOGAN 10) GHz	ton implantation	
Xion/France	Supernanogan, 14 GHz	z, perm. magn	ion implantation	-
HMI/Berlin/Germ.	Supernanogan, 14 G Ha	, peim hagh	non implantation, 1)	-
	the second second		A CARLON STRUCTURE FRANK AND STRUCTURE	

THIRD GENERATION ECR ION SOURCES

LBNL/USA	VENUS 28 GHz	cyclotron injection and ECRIS R&D
IMP/China	SECRAL 28 GHz	HIRFL cyclotron injection
RIKEN/Japan	28 GHz ECRIS	inj. for RIBF, under construct.
NSCL/MSU/USA	SUSI 18/(24) GHz	cyclotron injection for 1)
GSI/Germany	MS-ECRIS 28 GHz	under construct., multipurpose
LPSC/France	A-Phoenix 18/28 GHz, hybrid	under commissioning

Total number of ion sources in the list: 70 (unknown number of 1st generation sources)

	and the
Main applications	
nuclear/high energy physics	≈ 34
material science	≈ 12
ECRIS R&D	≈ 7
hadron therapy	≈ 9
implantation/nanotech.	≈ 5
charge breeder	≈ 6
space effects testing	≈ 4
	ALL ALL

Japan	11		
Germany	9		
USA	9		
France	6		
China	5		
Italy	5	1.5	
Russia	4		
India	3		
South Africa	2		
Switzerland	2		
UK	2		
Austria	1		
Canada	1		
Finland	1		
Hungary	1		
Kazakhstan	1	Or investig	
Netherland	1		
Serbia	1	L	
Montenegro		Sec.	
Slovak rep.	1	-	
Sweden	CAL STA		

Electronic component testing

SEE tests

Table 1. 9.3 MeV/amu cocktails (M/Q \approx 3.7, [‡]M/Q \approx 3.3).

lon	Energy	LET ^{SRIM}	Range ^{SRIM}	LET ^{SRIM}	LET ^{SRIM}	LET ^{BNL}	Range ^{BNL}
	[MeV]	@surface	[microns]	@50µm	@ Bragg peak	[MeV/mg/cm ²]	[microns]
		[MeV/mg/cm ²]		[MeV/mg/cm ²]	[MeV/mg/cm ²]		
¹⁵ N ⁺⁴	139	1.8	202	2.1	5.9 (@198µm)	2	210
²⁰ Ne ^{+6 ‡}	186	3.6	146	4.4	9.0 (@139µm)	4	150
³⁰ Si ⁺⁸	278	6.4	130	7.8	14.0 (@120µm)	7	129
⁴⁰ Ar ^{+12 ‡}	372	10.1	118	12.6	19.6 (@105µm)	10	118
⁵⁶ Fe ⁺¹⁵	523	18.5	97	24.3	29.3 (@77µm)	18	99
⁸² Kr ⁺²²	768	32.1	94	39.2	41.0 (@69µm)	30	97
¹³¹ Xe ⁺³⁵	1217	60.0*	89*	69.2	69.2 (@48µm)	53	97

Hadron therapy (by carbon ions)

Porous membranes

Oxyphen

Our pores are more uniform than others.

RoTrac® Capillary Membranes are microporous membranes that open up countless new areas of application. These high-tech products made of polyester are characterized by:

- A defined pore diameter usually ranging from 0,1 µm to 10,0 µm
- A defined pore density ranging between 10⁵ to 10⁹ pores per cm²

The distibution of the pores across the surface is so dense that there can be several billion pores on a surface of 1 square centimeter, depending upon the pore diameter.

Based on a variety of different features, RoTrac® Capillary Pore Membranes have already provided ideal solutions in many applications

- Liquid filtration
- Controlled release of substances
- Controlled release of fragrances
- Moisture barrier
- Venting for electronic devices
- Venting for boxes and closures

life science, etc...

Hardi HOME	on+ TECHNOLOGY	http://www.qu	ertech.com/crbst_29.ht	MI file information request site map contact
		Hard ion+	Surface Metallurgy	
		Quertech Ingénierie controls th allow a treatment at low tempe	te technology of the particle accelerators which erature (80 °C).	
		A NEW TECHNOLOGY A Process : the insertion of nitr 10 µm re-alloy, nano-structure A treatment machine : compos vacuum chamber. Process and	rogen, helium, by a particle accelerator from 0 to or amorphise the surface. sed mainly of a micro-accelerator of particule and a d machine are under Quertech ingénierie patent.	
		No deposit, no coating : a real	re-alloy. an amorphisation or a nano-restrucration	
	Aluminium Titanium	A RANGE OF MACHINES The power of the ion source an treatment time and the size of	nd the size of the vacuum chamber determine the the bart to be treated.	
	GAINS Hardness : Elasticity & Corrosion	up to 780 % of ind rigidity resistance strong	crease (15 GPa, Vickers ex Ily increased	trapolation 1530 Hv)

remperature : gain on study

Friction : reduction of the friction coefficient (0.14 - 0.17).

Polymers

Treatment limited to the zones under constraints: processing time optimized Minimal preparation of the substrate: reduction of use of polluting agents to ach Delamination Impossible : strong connection of the layer within the substrate (mixing). Cieve ultra-cleanliness. Alumina pulverized during the treatment.

APPLICATIONS

Automotive area, motorization Increased hardness and thermal resistance of the head of a piston.

Injection mouldings

Increased hardness of the mating planes of a mould (hammering) and anticorrosion treatment of the moulding surface (Chlorine corrosion).

F.A.Q. Processing time ? Depends on the ion source power, the surface area to treat and the size of the part (vacuum). An average estimate of the time needed is 10 s per cm² treated. Maximum size of the part to be treated ? Depends on the capacity of the vacuum chamber.

"God created the Solids, the Devil their Surfaces "

> Wolfgang Pauli Nobel Prize in Physics

BIOMÉDICAL

Problématique

Inflammations articulaires causées par les débris résultants du frottement

Cytotoxicité par relargage

Difficulté de la nécessaire colonisation cellulaire

Traitements de surface actuels supportant mal la stérilisation (température)

Proposition Hardion+

Dureté (X7)

Réduction du frottement par amélioration de l'état de surface

Barrière de diffusion

Adhésion cellulaire favorisée par l'implantation d'Azote

Tenue à la température du traitement (stérilisation)

