

New 28GHz SC-ECRIS for RIKEN RI beam factory project

1. Status of RIBF

2. Physics of ECR plasma

3. Structure of new SC-ECRIS

Magnetic field Geometrical effect Biased disc measurement of plasma potential

HR.E

升升田

Sc-Coils Cryostat Plasma chamber

Schedule

New Injector System

Key parameters for designing of Sc-ECRIS

Magnetic field

 $B_{inj} \sim 4T \quad B_{ext} \sim 2T \quad B_r \sim 2T$ (High B mode)(plasma confinement) $B_{min} < 1T \quad (\sim 0.8B_{ecr})$ (field gradient) ECR zone size as large as possible

Chamber size

Diameter >15cm(comparison between RIKEN 18 GHz
and VENUS, SCRAL)Length >50cm(Confinement time)

Microwave

28GHz Power >10kW (1kW/L)(Power density)

Geometrical effect

Movable disc

<u>B_{min} effcet</u>

Power density effect

ECR zone size (I)

ECR zone size(II)

Schematic drawing of the RIKEN SC-ECRIS

<u>Cryostat</u>

Heat (4K)			
Radiation	~0.18W		
Support	~0.5W		
Current lead	~1W		
X-ray	> 3W		
<u>70K(GM)</u>	<u>160W</u>		
<u>4K(GM)</u>	<u> </u>		
<u>4K(JT+GM)</u>	<u> </u>		
Amount of the LHe is about 500 L.			

Total nine current leads made of high Tc material are used to reduce the heat load to 4 K.

The electromagnetic force between the magnetic shields and the cold mass is estimated to be 8 tons in maximum in axial direction

X-ray effect

Rev. Sci. Instrum. 79(2008)033302 D. Leitner et al,

GM-JT Cryo-cooler

CG310SC(SUMITOMO)

Cooling capacity

Ambient temp. range Dimension Weight Compressor co

ge 4 to 38 deg. \$\overline{\phi}360x789L \$\sigma 50kgr cooling water ambient temp. range Electric power consump. Electric power Weight Dimension

4.2W/5.0W @4.2K(50/60Hz)

5to 35deg. 5.1/6.1kW(50/60Hz) AC200V 3 phase ~220kgr 700Wx520Dx1095H

Superconducting coils

Main parameters of SC-Coils

 Table 1. Parameters of the supeconducting coils

	SL 1	SL 2	SL 3	SL 4	SL 5	SL 6	Sextupole]
Inner radius (mm)	170	175	175	175	175	170	102	
Outer radius (mm)	250	220	220	220	220	250	142	
Length (mm)	135	75	35	35	75	100	1073	, in the second se
Conductor size (mm)	0.82 x 1.15	0.82 x 1.15	q1.09	q1.09	0.82 x 1.15	0.82 x 1.15	0.82 x 1.15	
Cu/NbTi ratio	1.3	1.3	6.5	6.5	1.3	1.3	1.3	<u> </u>
No. turns	9124	2778	1305	1305	2778	6830	1216	
Current (A)	162	182	109	109	155	132	271	
Bmax (T)	7.2	5.2	3.1	3.0	4.8	5.4	7.4 (6.5)	
Ic (A)	203	298	229	233	278	223	349	
Iop/Ic	0.80	0.61	0.47	0.47	0.56	0.59	0.78	
Inductance (H)	34.0	4.0	1.0	1.0	4.0	20.0	6.9	

Magnetic field strength

 I_c performance of the conductor with a rectangular shape and the load points for the solenoid SL1 and the sextupole magnet.

Although the maximum field on the sextupole coil windings is 7.4 T, the component perpendicular to the current direction is 6.5 T.

Support for hexapole magnet

Circuit diagram for solenoid coil

Plasma chamber, gas feeding system etc

Plasma chamber

Gas feeding system, Biased disc etc

Beam extraction

New Injector System(II)

EXCITATION TEST

run # sextupole SL1 SL2 SL5 SL6 design 2 quenches 100% of designed value 13(NQ) 85~90% of designed value

Table 2. Coil currents (A) when the sextupole quenched.

HLE

For 28GHz Conventional magnetic field configuration

Estimated magnetic field configuration (85% of designed value)

<u>For 18GHz Flat B_{min} field</u>

Estimated magnetic field configuration (85% of designed value)

Planed schedule

First plasma(2009 spring) 18GHz RF (3kW max)

Required beam form SC-ECRIS

several 10 μA of U^{35+}

