

18th International Workshop on ECRISs *Chicago, Illinois USA - September 15 - 18, 2008*

Recent Results and Operation at 18GHz with SECRAL

H.W.Zhao, <u>L.T.Sun</u>, X.Z.Zhang, X.H.Guo, Z.M.Zhang, P.Yuan, W.L.Zhan, B.W.Wei, W.He, M.T.Song, J.Y.Li, Y.C.Feng, Y.Cao Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou, 730000, China

D.Z.Xie

Berkeley Ion Equipment. Inc. Santa Clara, California 95054

IMP-Lanzhou, China

Outline

Review of the typical performances

On-line operation status

New developments

The option for fully superconducting ECRIS

 $n_e \sim \omega_{rf}^2$, $I \sim \omega_{rf}^2$ $B_{ecr} = \omega_{rf} m_e / q$, $B_{inj} \ge 2$ Becr

Conventional Structure

High B, ω_{rf} , P_{rf}

VENUS in Berkeley (18-28 GHz)

Disadvantage:

Very strong interaction forces;
Much longer sextupole;
Bigger source body;

Hi SERSE and VENUS are pioneers, MS-ECRIS, RIKEN SC-ECR, SuSi...

IMP-Lanzhou, China

SERSE in Catania (14.5-18 GHz)

Higher sextuple field;

Larger plasma chamber;

Higher rf power up to 10 kW;

Advantage:

L. T. Sun, ECRIS08, Chicago-2008.9

Performance review (2)

IMP-Lanzhou, China

Plasma Detection

 Bigger ECR zone • Higher microwave frequency 18 GHz vs 14.5 GHz Better plasma confinement Higher magnetic field

Large plasma chamber

70

IMP-Lanzhou, China

SECRAL at the Axial Injection Beam Line of IMP Cyclotron (2007. 4)

IMP-Lanzhou, China

Preliminary emittance analysis

IMP Allison-type emittance scanner. Located after the analyzing magnet

IMP-Lanzhou, China

L. T. Sun, ECRIS08, Chicago-2008.9

Intense ¹²⁹Xe ion beam for HIRFL

- The first beam: ¹²⁹Xe²⁷⁺, extraction voltage: 22 kV,
 rf power 1.2-1.6 kW,
 Beam intensity: 140-160 eµA,
 Continuously operated for more than one month.
- Dedicated to commissioning of IMP new project HIRFL-CSR.
- \checkmark SFC Xe beam increased by factor 10
- ✓ SSC Xe beam increased by factor 50
- ✓ CSRm accelerated Xe²⁷⁺ beam to 235 MeV/u, accumulated beam intensity up to 500 eµA (1×10⁸ pps), the heaviest ion and the biggest beam intensity achieved for a heavy ion synchrotron with a cyclotron injector, impossible without SECRAL.

MMI + Ramping (¹²⁹Xe²⁷⁺-2.9~235MeV/u) in CSR_m

IMP-Lanzhou, China

1 XN/

Intense ⁷⁸Kr ion beam for HIRFL

IMP-Lanzhou, China

Experimental setup for mass measurement

CSRm ⁷⁸Kr²⁸⁺ 204.7MeV/u 402.5MeV/u 403.0MeV/u 404.5MeV/u 451.1MeV/u 458.4MeV/u

New Development (1)

IMP-Lanzhou, China

New Development (1)

IMP-Lanzhou, China

New Development (1)

IMP-Lanzhou, China

New Development (2)

IMP-Lanzhou, China

New Development (2)

IMP-Lanzhou, China

Summary & Conclusion

A superconducting ECR ion source SECRAL with an innovative magnet structure has been successfully built. SECRAL has reached the designed specifications and be able to operate with a nice reliability and stability;

SECRAL has been used for accelerators at IMP to produce intense stable high charge state heavy ion beams for more than one year. Many outstanding work at IMP could not be possible without the stable operation of SECRAL, such as the successful acceleration and accumulation of 235 MeV/u ¹²⁹Xe²⁷⁺, 451 MeV/u ⁷⁸Kr²⁸⁺ and also the outstanding work of on-line nuclear mass measurement by secondary beams on CSRe. Within the maximum 2 months continuous operation, no quench or other problems occurred. Generally, ion beams are very stable and well up to the requirements of HIRFL accelerators.

 Several performance development works are under processing, such as the new aluminum plasma chamber, double frequency heating, and 24 GHz microwave driving. More results are expected in 2009.

THANKS 谢谢

IMP-Lanzhou, China