Abstract

A description is given of the combined function, beam emittance and profile measuring system, installed on the 665 keV H⁻ pre-injector at ISIS, the high intensity pulsed neutron source at the Rutherford Appleton Laboratory. The computer controlled system, consisting of in-vacuum beam analysing slits, and multiwire detectors, linear actuators, position encoders, motor drives, and signal conditioning electronics, measures the transverse emittance and profile of the 300 µs, 35 mA, 665 keV H⁻ beam, with high precision.

1 INTRODUCTION

The concept and accurate measurement of beam emittance are of fundamental importance to the design and operation of particle accelerators. This description of the beam, when combined with a knowledge of those forces and processes that act on the beam (e.g. acceleration, space charge, scattering), enables the accurate prediction, and modelling of beam dynamics to be made, in accelerators and transport beamlines.

A particle beam, consisting of an ensemble of particles, each defined in terms of a total energy function, or Hamiltonian (H), is characterised by defining beam emittance, as the volume of a hyper-ellipsoid in six dimensional phase space, with the canonical coordinates x, pₓ, y, pᵧ, z, pž [1].

In practice, emittance is measured at constant beam energy, and by techniques that evaluate the ‘root mean square’ (rms) density distribution in the six dimensional phase space, in terms of elliptical area projections in the two dimensional longitudinal sub-space, with phase and energy coordinates (ϕ, W), and the four dimensional transverse sub-space, with position and divergence coordinates (x, x', y, y') or (r, r').

Measurement systems, fall into two distinct groups, those for the determination of longitudinal emittance (Δϕ/ϕ, Δp/𝑝) [2], and those for the determination of transverse emittance (x, x', y, y') or (r, r') [3]. Systems can be non-destructive or destructive to the beam. The former include the wire-shadow and tomographic methods [3], both capable of being implemented in H- beams using the laser detachment method [4]. The latter systems include the pepper pot, electric sweep, slit-slit, and slit-harp [3]. A computer controlled, slit-harp emittance, and profile measurement system has been installed on the 665 keV H⁻ pre-injector at ISIS.

2 EMITTANCE MEASUREMENT

The transverse beam emittance ε is defined as the volume of a four dimensional hyper-ellipsoid given by:

εₓᵧ = π ∫∫ dx dx' dy dy'

The measurement evaluates εₓᵧ in terms of the two dimensional projections in the x, x', and y, y' planes:

εₓ = 1 4 ∫ dx dx' = 1 x Aₓ , εᵧ = 1 π ∫ dy dy' = 1 y Aᵧ

where Aₓ and Aᵧ are elliptical areas in the x, x', and y, y' planes, for ‘normal’, or ‘perfect’ beams [1]. For real beams, the evaluation of rms emittance, defines the ellipse area, of a transportable ‘equivalent perfect beam’, that is an invariant of motion in linear focusing transport systems [1]. This area is defined in terms of the second order moments, y², y'², x’y’, of the density distribution ρ(y, y') as:

εᵣᵣ = \sqrt{y² + y'² - (y’y’)}²

Evaluation of εᵣᵣ and the related Twiss parameters, at one point in a beam transport system, enables an accurate prediction of the ‘transported’ ellipse parameters to be made at any other point in the system, by means of a ‘sigma’ matrix manipulation [5].

Figure 1. (a) Slit-harp measurement schematic. (b) Beam density distribution in (Yₛ,Yₕ) plane. (c) Phase space contour for a gaussian beam with a y-plane waist. (d) Definition of Twiss parameters.
A schematic showing the essential features of the slit-harp measurement system is shown in figure 1(a). A beamlet, selected by a moveable slit at Y_s, is intercepted on a downstream multi-wire detector (harp), as a current density distribution $I(Y_s, Y_h)$, centred on Y_h. The profile for each slit position is stored in a two dimensional array, Y_s, Y_h. The right ellipse, shown in figure 1(c), represents an rms contour in the Y, Y' plane, for a beam with a gaussian density distribution, and a Y'-plane waist. The input data ellipse in the Y_s, Y_h plane, shown dotted, indicates how the input data is sheared to generate the Y, Y' phase space data.

3 CONTROL PROGRAM STRUCTURE

Three measurement cycles, beam profile (x, I_{BEAM} and y, I_{BEAM}), and emittance in the two transverse planes (x,x'), or (y,y'), are initiated and run under program control on an ISIS control system computer.

The phase space data is processed to produce plotting coordinates for a 2D contour map, with contours at 5, 10, 30, 50, 70, and 90% of the normalised peak beam intensity. The area inside the coordinates of the outermost contour is computed, by summing the areas of all the triangles formed by the centroid and successive pairs of contour coordinates. An ellipse is fitted to the coordinates of the outermost contour by first performing a least squares fit, to determine the slope of the major axis, and then, setting the length of the major axis, equal to the maximum width of the contour in the x direction, and the length of the minor axis equal to the maximum width of the contour in the x' direction. Computation of rms emittance is currently performed off-line.

4 MECHANICAL DESIGN

A plan view of the ISIS 665 keV H- beam transport area, showing the location of the emittance measurement installation, is shown in figure 4.
Figure 5: Actuator construction (schematic)

Limit switches prevent actuator movement beyond predefined limits. Lock out latches prevent the possibility of positional ‘creep’ in the parked position, when the stepping motors, in the de-selected plane, are disconnected from the multiplexed motor drive units.

5 ELECTRONIC DESIGN

The important features of the emittance measuring system drive control, and signal conditioning electronics, are shown in figure 6.

![Electronic system schematic](image)

Figure 6: Electronic system schematic

Each linear actuator is powered by a 16 watt, two phase stepping motor [6]. The output of a programmable stepping motor controller, with a pre-set acceleration / deceleration slope [6], is multiplexed via two motor drive units [6], to control the positioning of the pre-selected slit / harp actuator pair. Plane selected slit / harp position measurement signals, derived from rotary, absolute position resolvers, are multiplexed to two resolver to digital decoders with 14 bit output resolution (1 LSB = 1/64 mm). Signals from limit switches and lock-out latches provide status information, and are hard wired to prevent damage under fault conditions.

Harp signal wires are biased at -100 volts, to repel thermionic and secondary electrons, stripped from the H-beam. Signals from the ten harp wires are plane multiplexed to a ten channel gated integrator. Integration time is synchronised to the beam pulse length. Integrated signals are output to the data acquisition microcomputer, where the analogue signals are stored as 12 bit data words, that are subsequently transferred to the control computer under program control.

6 OPERATIONAL EXPERIENCE

A routine measurement of beam alignment in the 665 keV H- transport line, is made after each ISIS ion source change (lifetime ~ 30 days), and normally, a full emittance measurement, taking about 20 minutes, will be made. The profile measurement, enables a more rapid (~30 s) check of beam position and width to be made.

7 ACKNOWLEDGEMENT

Contributions from the following are gratefully acknowledged: S. L. Thomas (ISIS emittance graphics), A. I. Borden, and D. Wright (data acquisition microcomputer and software), ISIS project engineering group (mechanical design), and many others.

REFERENCES