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Abstract was effectively used to solve the problem of the beam dy-

Theory of resistive wall instability damping using a feegramics N an accelerator with a digital feedback.

back system with a digital filter and delay is developed
A system of equations is obtained for description of bear‘g'l General Approach

motion. To solve equations the Z-transform method is use@aking into account the results obtained in [2] the study
The general solutions are analysed for feedback circuit wiibf the transverse coherent motion bunch dynamic is started
a digital filter and delay. The damping time is found forfor independent bunches. In this case the bunch coupling,
the feedback with an additional one revolution period dewhich occurs due to resistive wall instability, is neglected
lay and for the feedback with a single beam correction peind the matrix method becomes suitable for the beam mo-

two revolutions. tion description. R
Let the column matriXX[n, s] determine the bunch state
1 INTRODUCTION at then-th turn at points of the circumferencé€,. The first

_ element of this matrix equals the beam deviatign, s]
Transverse feedback systems (TFS) are used in syWiom the closed orbit and the second oneig:, s]. Af-
chrotrons to damp the coherent transverse beam oscilkgr 3 short DK ther’ value of the beam is changed by
tions [1]. In these systems the kicker (DK) corrects they;/[n, 5], while deviation remains the same as before the

beam angle according to the beam deviation from thgk at pointsy. Hence, after DK at poing}, the beam
closed orbit in the pick-up (PU). A classical TFS consiststate is

of one PU and one DK per plane. A schematic diagram N N N B R
of this system is shown in Figure 1. The DK changes the X[n, si] = X[n, s] + TAX[n, sg],

whereT is the2 x 2 matrix in whichTy; = 1 and the other
elements are zero. The kick is determined with column ma-
trix AX[n, sk], where the first element equals:’[n, s k|
and the second one has an arbitrary value.

Let us introduce the unperturbed revolution maﬂr/d'\x
from pointsp of the PU location to poinip + Cy and the
transfer matrix]\fl\l from point s of the DK location to

beam

pointsp + Cp:
Figure 1: Schematic diagram of the TFS e .
My = M(sp+ Co,sp),
angle of the same fraction of the beam that was measured ]\’Zl = J/\/[\(sp + Co, 8K)- (1)

by PU. The delay- is adjusted to provide such a synchro- _

nization. The value of this delay is normally less than ondhen atthe PU location at thie + 1)-th turn the beam state
turn and the kicker corrects the beam angle at every tur.

But_sometimes_this yalue may be more than one revol_ution)’g[n +1,sp] = M\o)?[n, sp] + leAX[n, skl ()
period. Such situation can occur for a synchrotron with a

short length of circumference or for a feedback circuit with Let Az'[n, sx] be proportional to the output voltage in

a special digital filter where procedures for signal transfothe feedback circuit during-th crossing of the kicker. The
mations are realized with signal processors. This paperiigput voltage is assumed to be proportional to the beam de-
based on studies of TFS for feedback circuit with a moreiation z[m, sp] in the pick-up. The kicker should change

than one revolution period delay. the angle of the same fraction of the beam that was mea-
sured by the PU. The delay = ¢7, + 7; is adjusted to
2 THEORY provide such a synchronizatiofi§ integer,T; is the revo-

lution period,r; is the time of the patrticle flight between PU
The description is based on the theory of multi-bunch resisnd DK). For the studied problem the valuegaf greater
tive wall instability damping where Z—transform method than zero and the kick at theth turn depends on the beam
is used to obtain a general solution [2], [3]. This approachtate at the previous turngi(= n — q).



2.2 Every Turn Correction

If the kicker corrects the beam angle at every turn, then:

A)/f[n,sK] = u[n — ¢ X[”-Q;SP]; )

K
VBprBK

where Bp and Bk are the transverse betatron amplitude

functions in the PU and DK locationk, is the gain of the

feedback, and[n] is the discrete unit step function [4].  system function. For examplK,(z) with an lIR—filter (see
SubstitutingA)?[n, sk from Eq.(3) in Eq.(2) we get Fig.2) is

Figure 2: Schematic diagram of an IIRfilter

= z+a
)?[n-l—l,Sp]:]/W\oX[ pl+ K(Z)_|K|Z_b> (10)
K A . . Lo
+uln — g P TX[n —q,sp)- (4) }/i\:?eerre|K| is the gain factor of feedback circuit without any

Eq.(4) fully describes the beam dynamics in an accelerator
with a feedback system considered. This equationis solvei3  Single Correction per Two Turns

usingZ-transform [4] forX [, 5]: A feedback system with single correction per two turns can

oo be of two types:

X(z) = Z [n, s]z™" (5)

(a) DK corrects the beam angle at the same turn when PU

~ _ o measures beam deviation, and there are no corrections
Xln,s] = ZReZ [ (2) 2 } : at the next turn;
k (b) DK corrects the beam angle at the next turn after PU
The motion of the particles will be stable|if,| < 1. The measuring of beam deviation.

beam motion parameters are fully determined by the singlf,- : ~ .

. P he relation between two states @i, s] is constructed
lar pointszy, : the number of oscillations per tufiReQ;. } L ’ )
equalsarg(z;) /27 and the damping timep, is due to the two turns periodicity of these corrections. In ac-

cordance with Egs.(4, 3), the beam stﬁthn +1, s] (after

two turns) is
B = —In|z|. 6) )
D ~ —
(@) Xlm+1,sp] = My(My +
Using Z-transform for Eq.(4) we get K
SO _— +———MT) X[m, sp); (11)
- 2l — M7 (2)det M(2) o VBpBK )
X(z) = — 2X10, sp], (7) ~ —,
det (zI— M(z)) (b) : X[m+1,sp] = (Mo +
a4 K —~ -\«
i o 2 K)o s ——MT)X : 12
M(z) = My+ —6pﬂ(K)M1T’ (8) +m 1 ) [m, sp] (12)

Z—transformations of Egs.(11, 12) yield similar equations

wherel is the unit matrlx,X[O sp]is the initial beam state ¢ X( ) as Eq.(7). The matrices for determining singular
matrix; K (z) is the transfer function for a feedback circuit. pointsz;, in Eq.(9) are

It is known [4] that in radiotechnical sense the circuit is

stable if all the singular points (K( ) lie inside the circle . - f((z) R
|z| < 1. If this condition is fulfilled, the singular points; (@): M(z) = Mg + 50 MM, T, (13)
in (7) are found from the equation [3]: 1(3 )K
= —~. K(z) —~ ~
. b):  M(z) = M2+ M\T, (14)
det (zkI—M(zk)) = ) ) * " VBrBk '

=2} — 2 TrM(z) + det M(z;) = 0. (9)  whereK(z) has been determined in (10).

When instability occurs, Eq.(9) will have the same form
but the betatron phase advances for elemeriﬁaf) must
be calculated with a complex value @ z) both for coast-
ing [5] and bunched [2] beams.

If the feedback circuit of a damper system has a digitdfor an every turn correction with an IIR-filter and an ad-
filter then the transfer functioK (z) must include the filter ditional delay in the feedback path the equation (9)for

3 RESULTS

3.1 Every Turn Correction



with I\A/I(z) from Eq.(8) ancf((z) from Eq.(10) is +1 — |K]|siny =0,
() : 2% — (2cos(47Q) + K| sin(27Q — ¥)) z +

. Kiz+a .
22— (2 cos(27Q) + ~ 2 Tb sin(2r@Q — ) ) 2 +1 — |K]sin(27@Q + ) = 0.
41— MH_Z sineh = 0, (15) Hence, the damping time
zZ Z—
where() is the number of unperturbed betatron oscillations o _ —% In | 2]
Td

per revolution in transverse plane, atidis the betatron
phase advance from PU to DK. Eq.(15) is the forth powef, jinear approximation|K | < 1) is
equation, whose four roots determine the beam stability di-

. inli imati in: T 1
agram. If[K| <« 1, then in linear approximation we obtain (a) To _ 1|K| sin b — 27[ImQ):
Td
K] , .
= = T, 1
21,2 (1 Fiyexp (Fi(2mQ + 1)) ) exp(£i27Q) ) : 7—_o _ Z|K| sin(27Q + 1) — 27[IMQ)|.
d
a+b b — exp(Fi2nQ) .
+i 2 K] 1 — 2bcos(27Q) + b2 exp(FiY) ; Therefore, the best damping will be for those PU and DK
ay bsin(2rQ — ) + sin ¢ locations that take into account the phase advance from the
zz = b+ K] (1 + Z) 1= 2beos(2rQ) 1 12 ; PU sample to DK correction including the one turn delay.

“ It is important to emphasize that the damping rate values
zg = |K|-sing . (16) for the feedback with the single correction per two turns
b are two times slower than the values for a feedback with
Roots 1 and 2 correspond to the eigen frequencies with tegery turn correction.
number of oscillations per turn in the neighbourhood of
Re). Roots 3 and 4 correspond to two new modes that are 4 CONCLUSION
conditioned with the IIR—filter structure and the one turn
additional delay. The conclusions [5] made for the filterhe consideration of damping regimes for a damper sys-
parameters are valid here too. Thus, to provide the indéém with an additional one turn delay in the feedback path
pendence ofK | of the feedback action on the closed orbitellows one to maintain that every turn correction is prefer-
displacement and for the best suppression of the revoluti@®le. The damping rate value for this feedback with every
harmonics it is necessary to set= —1. The other filter turn correction is the same as for a damper system without
parameteb is chosen due to optimization on the maximundditional delay.
damping rate and the width of the stability region.
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3.2 Single Correction per Two Turns

All further results are shown for a feedback without a filter
in order to simplify the final equations. Eq.(9) foy with
M(z) from (13) and (14) is

(a) : 2% — (2cos(4mQ) + |K|sin(47Q — ) z +



