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Abstract

To simplify the engineering efforts of implementing the
PEP-II lattices, many modifications have been made to
these | attices since the conceptual design report[1]. During
the development and evolution of the lattices, changes in
a lattice would often result in a significant reduction in
the dynamic aperture. At such times, we often relied on a
non-linear analysis using the one-turn resonance basis Lie
generator to identify the cause of the degradation. In this
paper, we will present such examples to facilitate the usage
of map for diagnosing the problemsin lattice design.

1 INTRODUCTION

In order to achieve the design luminosity of 3.0 x
10233cm =251 and maintain flexibility in optimizing the
luminosity, we need to attain a low-betavalue at the inter-
action point(IP) close to 1.5 cm for both the Low-Energy
Ring(LER) and the High-Energy Ring(HER). As a con-
sequence of this requirement, chromatic correction for
strong quadrupoles near the IP become critical to minimize
non-linear chromaticity and retain an adequate dynamic
aperture. Many of the mgjor revisions of the lattices2][3]
resulted fromtheimprovement of the schemesfor chromatic
corrections.

Among the lattice examples, we will select three in-
stances related with chromatic behaviour of the lattices.
Through the examples, we will show how to analyze the
one-turn map and how to identify the causes of inadequate
dynamic aperture. Firgt, let’s establish some notations and
terminologies used in anaysis of maps.

2 EFFECTIVE HAMILTONIAN

There are many waysto extract aone-turnmap from agiven
lattice. Among them, the most straight-forward method is
based on thethinlens or symplectic kicking code. Onesim-
ply replace the double-precisionvariableswith the differen-
tial agebraic(DA)[4] variablesinthe phasevector wherever
particles are tracked. In particular, in any object-oriented
codes this scheme could be implemented easily since one
couldbuildaDA variableasan abstract typein the program.
Then, a Taylor map would be obtained by tracking a vector
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Table 1: Main PEP-1I nominal parameters.

Parameter LER HER
Energy, E[Gev] 31 9.0
Circumference, C[km] 22 22
Emittance, €, /e, [nm-rad] 64.3/2.6 48.2/1.9
Betafunction, 3; /8, [cm] 37.5/1.5 50.0/2.0
B-beam tune shift, 0,» /€0,y  0.03/0.03 0.03/0.03
Synchrontron tune, g, 0.03344 0.05207
RF frequency, frr[MHZ] 476 476

RF voltage, Vrr[MV] 51 185
Damping time, 75 /7,[M3] 29.2/60.5 18.4/37.2
Bunch length, a;[cm] 1.0 1.0
RMSéE/E, og 7.7x107% 6.1x 107*
Tota current, ITA] 214 0.99
Synch. loss, Up[Mev/turn] 0.77 3.58
Luminosity, L[em ™ %s—1] 3.0 x 1023 3.0 x 1033

initiaized to theidentity with DA variablesthroughthelat-
tice.

A Taylor map is symplectic up to the order of the trun-
cation if the effects of the radiation damping and quantum
excitation areignored. Here wetreat momentum derivation
§ = dp/p as aparameter of the map and denote the Taylor

map as] 5]

2p = M(2:,8) + O(N + 1), &)

where O(N +1) indicatesthat the Taylor map istruncated at
an order of N, z; istheinitia phase-space coordinates, and
z# isthefinal phase-space coordinates.

Furthermore, because M is symplectic we could define
an effective Hamiltonian Hg 7+ as

M4, 8) =177 e (O, )

here we use : H : as a short notation of a Lie operator[6],
which acts on a function of phase-space variables
f(z) through the Poisson bracket as : H(}) :f(z) =
{H($),{(})}. The effective Hamiltonian contains almost
all information, near the origin, of single particle dynamics
in the extracted lattice. In genera, given a map extracted
relativeto a closed orbit, it can be expressed as



Herr(,8) = Y Ha(t,6), ©)
N>3

with

Hi = ps Iy + 11 It

where p, and p, are tunes, J, and J, are the action in-
variances of the lattice, and H »r are non-linear parts of the
Hamiltonian. Hp could be calculated order-by-order per-
turbatively from the underlining Taylor map. In the next
section, we will show examples of how to use the effective
Hamiltonian.

3 NONLINEAR DISPERSION

One of themgjor revisions of the LER latticewas moving a
—1I chromatic correction modulein the vertical plane from
the congested interaction region into the nearby arcs. Inthe
horizontal plane, we kept the —I module immediately &f -
ter the final focusing quadrupoles since the dipole for sep-
arating the beams near the | P provides dispersion naturaly.
However, the additional dipole needed to make dispersion
symmetric inside the —I section was removed in order to
resolve the problems of interference between the magnets
inthe LER and the HER. At first, the asymmetry of disper-
sion at the first pair of sextupolesdid not cause any degra-
dation of the dynamic aperture. Therefore, the new lattice
was adopted as the officia design[2].
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Figure 1: Dynamic apertures for ideal LER lattices with
1005 synchrotron oscillation

A month later, we made another change in the opticsin
two wiggler sections to accommodate a new wiggler con-
figuration. We were surprised to see that the dynamic aper-
ture(Fig. 1) dropped below 100 in the horizontal planeeven

for the case without any imperfections of alignment and
multipole.

We cal cul ated the effective Hamiltonianintroduced inthe
last section and saw that theterm 62 increased significantly
from the previous lattice. Knowing this large second or-
der dispersionin the one-turn map, it was not hard to figure
out whereit was generated in the | attice. Indeed, one could
show that the asymmetry of dispersion at the pair of sex-
tupol es separated by — I would be the source of the second
order dispersion. Using the method of paper[7], we could
derive acombined map for the pair of sextupolesfrom

e—%Ksz(z+n16)3:e—%KS:(—z+n26)3: ~
e~ 51K s:(3(mutn2)z 6 +3(ni —nz)e8  +(n3 +13)6%): ()

where K s wasthe strength of the sextupoles, z wasthe hor-
izontal coordinate, and »; and n; werethedispersionsat the
positionsof thefirst and second sextupol esrespectively. In
the derivation, we first transported the map of the second
sextupol e to the place near the first sextupole by a similar-
ity transformation, then used the first order approximation
of the Cambell-Baker-Hausdorf theorem to concatenate the
maps. Additionally, the derivationitself showed us another
method to obtain the effective Hamiltonian without going
through a Taylor map. It was obvious from the result that
the second order dispersion 62 was due to the difference
in the dispersions.

We were then ready to explain why the dynamic aperture
degraded for the last modified lattice. Since the non-linear
dispersionwas propagated in thelattice according to the be-
tatron phase, alocalized source, aswe discussed earlier, may
not be aproblemif it reached its minimumvaue at theloca
tion of aRF cavity where the synchrotron and betatron oscil -
lations were coupled. Fortunately, that was the case before
wiggler sectionswere modified. It became the oppositewith
amaximum value of non-linear dispertion at the RF cavity
after the modification.

It was clear from Eq. 4 that the second order dispersion
was proportiona to the strength of the sextupoles. Based
upon this observation, we started to search for a chromatic
solution in which the strength of thefirst horizontal pair of
sextupol eswas minimized. Once wefound a such solution,
the dynamic aperture recovered back above 100 as shown
inFigure1.

4 SYNCHROTRON SIDEBANDS

In the conceptual design report[1], the tunes for the HER
lattice were selected as u, = 0.57 and p, = 0.64 based
solely on the simulation of the beam-beam effects. The se-
lected tunesworked just aswell for thelattice with the nom-
inal 3; = 2.0 cm.

But when we tried to reduce the 8; from 2.0 to 1.5 and
then to 1.0 cm the | attice became very sensitiveto any im-
perfections. Again we checked with the effective Hamil-
tonian for the clues. Its coefficients normalized at 100 of
beam size were ploted in Fig. 2. From the figure, we could



see that the terms 226 was the largest among all the coef-
ficients in the Hamiltonian. This term along with the term
226 drovethe synchro-betatron resonance of 2, — 3u, =
2 x 0.57 — 3 x 0.05207 = 0.984. The reason for the sen-
sitivity of the lattices was the fact of that this half integer
synchrotron sideband was too close to the horizontal tune.

Actualy we had demonstrated that it was the source of
the problem by simply taking out thisterm in the map and
tracking with the modified map to seeif the dynamic aper-
ture was better. Of courseg, it was positively identified.

In this case, we only made a change in working tunes
e = 0.618 and pu, = 0.638 to avoid the sideband. After
thechange, wewere ableto achievetheg; = 1.0 cm, which
equalsto the bunch length of the beams. The improvement
of thelattice provided us more flexibility in optimization of
the luminosity.
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Figure 2: Normalized coefficients of the effective Hamil-
tonian plotted in log scale horizontally. The vertical axis
shows corresponding indices (mg, my, ng,ny) for reso-
nances and orders. The corresponding chromatic indices,
p’'s, are not explicitly shown but are indicated with line pat-
terns (p = 0: solid, 1: dashes, 2: dots, 3: dotdashes, etc.)

5 CHROMATIC COUPLING

A scheme of solenoid compensation[8] was worked out for
the LER ayear ago. Among skew quadrupoles used, there
were two pairs of skew quadrupoles located near the sex-
tupoles separated in —1I in the arcs adjacent to the interac-
tion region mainly to correct and adjust the vertical disper-
sion. Those skew quadrupoles were purposely placed out-
side of the pair of sextupoles so that the symmetry in the
—1I section would be preserved. Recently, two of the skew
guadrupol eswere moved to the other side of sextupoles be-
cause it was a simpl e engineering sol ution to avoid the big-
ger vacuum pipe. Once again, the symmetry inthe — I mod-
ule was broken. We saw a big chromatic coupling term
zyb in the Hamiltonian. The dynamic aperture was dete-
riorated as well. One could commute the map of the skew
quadrupole with the map of sextupole in a different phase
using the CBH theorem. The zyé term would be generated

asaresult. The resolution of this problemwasto avoid any
engineering sol ution with skewquadrupol es between paired
sextupol es.

6 SUMMARY

From the examples discussed in previous sections, we can
seethat Lie algebratechniques were routinely and success-
fully used in the design process for the PEP-11 lattices, es-
pecialy for diagnosing non-linear aberrations. We found
that the concept of the effective Hamiltonian was particu-
larly useful sinceit contained a minimum set of coefficients
and al the important information related to single particle
dynamics, such as chromaticity, and strength of resonances.
It also providesusan alternateway of thinking of an acceler-
ator as an effective Hamiltonian combined from a sequence
of hamiltonians rather than a sequence of electromagnetic
elements.
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