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Abstract

We study symplectic mappings which occur in the mod-
elization of the 4D betatronic motion in a magnetic lat-
tice and define the dynamic aperture in terms of the con-
nected volumein phase space of initia conditionswhich are
bounded for a given number of iterations. Different meth-
odsfor afast estimate of the dynamic aperture are outlined;
the analysis of the associated errors and the optimization of
theintegration steps are also reviewed. The accuracy of the
different approaches have been tested by mean of numerical
simulations. Both simple models and more redlistic | attices
have been considered.

1 INTRODUCTION

The presence of nonlinearitiesin the magnetic field of the
elements of an accelerator can greatly reduce the stability
domain[1, 2, 3]. An accurate estimate of the dimension of
thisdomainis crucia both for the understanding of the dy-
namics of existing machines [3] and for the specification of
the | attice parameters of planned machines [4].
Thenumerical estimate of thedynamic apertureisrelated to
the computation of the volumein phase space of theinitial
conditionsthat are stabl e after agiven number of revolutions
around the machine. The numerical evaluation of thisvol-
umeisvery CPU timeconsuming, asin principleoneshould
scan thefour variables (z, po, ¥, py ).

To overcome these problems for complicated lattices, the
tracking is carried out over initia conditions with p,, =
py = 0 and afixed ratio x/y with alarge gain in the CPU
time[2, 3]. Unfortunately, this approach does not take into
account two main effects, i.e. the distortion of the orbits
along the phases [5] and the different dynamics of the par-
ticleswith variousratios«/y [1, 3, 6]. Neglecting these ef -
fects, the computed dynamic aperturewill be affected by er-
rorsthat cannot be estimated a priori.

We present here some origina numerical methods [7]: to
eval uate the dynamic aperture taking into account the phase
space distortions. We prove that it is possible to exploit
the dynamics to take into account the distortion of the or-
bits along the phases, thus avoiding the integration over
these variables. We develop two agorithms to carry out
these fast estimates: one is based on numerical integra-
tion[8], the second expl oitsthe perturbativetool sof normal
forms[9, 10, 11].
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2 DYNAMIC APERTURE DEFINITION

Let x = (z, ps, ¥, py) bethevector of the Courant-Snyder
coordinates at a given section of the machine. The linear
motion isthe direct product of two constant rotationsin the
planes (x, p.) and (y, py) by the linear tunes. Let us con-
sider the phase space volume of theinitial conditions that
are bounded after NV iterations:

////X(l‘,px,y,py) dz dpy dy dpy, (1)

where x(z, pe, y, py) iSthe characteristic function of the set
of initial conditions that are bounded under NV iterations.
Sincein 4D theinvariant curves (i.e. 2D KAM tori) do not
separate different domains of phase space, there does not
exist alast invariant curve surrounding stable initial con-
ditions[12, 11]. However, it seems from numerical simu-
lations[2, 3, 6, 13, 14] that pathological situations are not
typical of weakly nonlinear lattices and they have no prac-
tical relevance, since they occupy a negligible fraction of
the phase space volume. Therefore, in generd, there exists
a connected region of initia conditionsthat are stablefor a
given number of iterations.

3 METHODSTO COMPUTE THE 4D
DYNAMIC APERTURE

3.1 Method 1: direct integration.

To exclude the disconnected part of the stability domain in
the integral (1), we have to choose a suitable coordinate
transformation. The natural choiceisto use polar variables
(r1,91,79,92); 7 and rp are thelinear invariants. Asthe
nonlinear part of the equationsof motion addsacoupling be-
tween the two planes, it isnatural to replace r; and r, with
the polar variables r cos o and r sin «:

x 7 Ccos o cos ¥y

Pa r cos o sin U4 r € [0, 4o00[
y = rsinacosvs V1,7 € [0, 27
py = rsinasinds a € [0,7/2];

Having fixed o, ¥; and 95, let r(a, 91, ¥2) bethefirstvalue
of » whose orbitisnot bounded after V iterations. Then, we
define the dynamic aperture astheradiusr, 4, s, Of the hy-
persphere that has the same volume as the stability domain.
To evaluate numerically thisquantity, one considers J steps
intheradia variable, K stepsintheangle« and I stepsin



theangles v, 9J-: the dynamic aperture then reads [7].

K L
T .
Padr0s = SKIZ 30> [r(an, duy, 02,)]* sin(2ax)
k=111,l2=1

Error sources. The discretization both intheangular and in
theradial variables leads to an integration error, which can
be estimated using the standard tool s of numerical anaysis.

o Thediscretizationintheangles; and ¥, corresponds
to atrapezoidal rule of integration [15]. In the follow-
ingswe will always assume that the more pessimistic
estimate ~! holds.

o Thediscretizationinthe angle o givesarelative error
proportional to K 1.

o Thediscretizationintheradiusr givesarelative error
proportional to J 1.

Step optimization. One should chooseintegrati on steps that
produce comparable errors, i.e. J o< K o L. Inthisway,
neglecting the constant factors, one can obtainareative er-
rorof 1/(4.J) by evaluating J* orbits,i.e. N.J* iterates. The
fourth power comesfrom thedimensionality of phase space,
and makes a precise estimate of the dynamic aperture very
CPU time consuming.

3.2 Method 2: integration over the dynamics.

The direct integration method, contains the average of
r(a, 91, 92)* over theangles. It is possibleto replace such
an average with an average over the iterates. To avoid
the effects of the non-uniformity of the distribution of the
phases on the last invariant curve, one can proceed in the
following way [8]

o Wefix J; and J,. A scan over a is performed to find
theradiusr(a, ¥, ¥2) defined in the previous section
and at thesametimethe IV iterates of theorbit are com-
puted.

e The square [0, 27[x [0, 27[ is divided in M? equa
squares (with M2 < N), such that each square con-
tains at least the phase of oneiterate of the last stable
curve.

o For each square (my, m2), wherem; = 1,..., M and
ma = 1,..., M, We Compute r,,,, m, (o, ¥1, J2), that
isthe average distance to the origin of theiterates that
fal inthat angular square.

Finally, the dynamic aperture is computed as
= K M
4 903 N4 o
Tod = 5172 l;m Zm:_l[rmth(ak, U1, U2)]" sin(2a).

Error sources. Theerror isgiven by thefollowing contribu-
tions.

e Thediscretizationintheangles,, ¥,, whichisgiven
by the A2 squares over which the integration is car-
ried out. The relative error in the dynamic aperture is
proportional to M~ oc N~1/2,

o Discretizationintheangle «: therelative error is pro-
portional to K 1.

¢ Discretizationintheradiusr: therelativeerror is pro-
portional to J 1.

Step optimization. Oneshould choose J «x K o« /M. Ne-
glecting the multiplicative constants, one obtainsarelative
error of 1/(4.J) evauating J? orbits, i.e. J°M? < J*N
iterates, thus saving a factor J2 with respect to Method 1.

3.3 Method 3: normal forms.

According to the nonresonant normal form theory, using a
conjugating function ® onetransformsa4D map F intoits
norma form U [10, 11], namely adirect product of rotations
inthetwo phaseplanes(z, p,) and (y, p, ), whose nonlinear
frequencies depend on the distance to the origin. The two
components of the inverse conjugating function ¥; and ¥,
give the approximated nonlinear invariants p; and p.
Thanks to the properties of the normal forms, the nonlin-
ear invariants py, po Will be independent on the values of
91,1, and the integration over the phases can be trivially
computed. The first order result will be

4 _ T 2 L — 9.0
Tanf = 55 ;[Pl,k‘sz,k] sin(2ag) pi g = pi(ak, 0, 02).
Error sources. Theerror isgiven by thefollowing contribu-
tions.

¢ Discretizationintheangle «: therelative error is pro-
portional to K.

o Discretizationintheradiusr: therelativeerror ispro-
portional to J 1.

o Normal form error. The application of normal forms
close to the dynamic aperture can give inaccurate re-
sults[11]. This error is due to the divergence of the
perturbative series and to the truncation of the series.
In the numerical examples analyzed in this paper, the
linear frequencies are far from low order resonances
and the normal forms turn out to be very accurate.

Step optimization. One should choose J o K. Neglecting
the multiplicative constants and assuming that the normal

form error is smaller than the integration error over » and
«, one obtains arelative error of 1/(4.J) by evaluating J*

orbits,i.e. J2N iterates: one saves afactor J2 with respect
to Method 1 (without constrai ntsover the number of iterates
such asin Method 2).



Table 1: Dynamic aperture estimates for LHC and SPS.

Mod€ Average Relative Error w.rt. 7, ¢, 4,
o To,d Tanf
LHC-Sex.only 16% 2% 3%
LHC-Allmult. 9% 15% 2%
SPS - WP1 13% 9% 8%
SPS - WP2 3% 5% 6%

4 NUMERICAL RESULTS

LHC cdll latticewith random errorsWeconsider alattice
made up of 8 LHCHike cdlls[4] plus a phase shifter to set
the linear tunesto the values v, = 0.28, v, = 0.31. Two
different sets of nonlinearitieshave been considered: alat-
ticewith only random sextupolar componentsinthedipoles,
and a lattice with random sextupolar, octupolar and decap-

olar componentsin the dipoles. The estimated val ues of the
LHC dipoleerrors have been used. For each case we anal-

ysed 10 different seeds. In Tab. 1 wereport therelative er-

rors between Methods 2, 3, and Method 1. We aso give
the position ry of the last invariant curve along the direc-

tiona = r/4and¥; = ¥, = 0; thisindicator iscommonly
used for fast dynamic aperture estimates of complicated | at-
tices[2, 3].

We computed the dynamic aperture over N = 1000 turns
using 20 steps for each variable, giving an accuracy of 2%.

For the Methods 2, 3 the number of stepsin « and in r is
20; 74,4 is computed over 1000 iterates. The normal form
truncation isfixed between 3 and 8, choosing the order that
minimizesthe normal formerror. Theresultsshow that both
a,q and 74 , ¢ Provide an estimate of the dynamic aperture
which isin agreement with the direct integration of the sta-

bility domain, without scanning over thetwo angles+; and
5. The estimate r, neglects both the distortion of the orbit
and the contributions coming from particles with different

emittances: as these phenomena are relevant, this estimate
israther imprecise.

SPS lattice We a so consider the SPS | attice corresponding
to the set—up used for nonlinear dynamics experiments[16].
The nonlinear part of thelattice consists of 8 strong extrac-

tion sextupoles plus 108 chromatic sextupoles. Two work-

ing pointshave been considered: thefirstone (WP1) at v, =

26.637 and v, = 26.533, which is close to resonances of

order 7 and 8; the second one (WP2) isv, = 26.605 and

vy = 26.538, which isclose to resonances of order 5. Both
cases correspond tovery perturbed situationswherethe non-
linear resonances are excited and the phase space isstrongly
deformed.

In Tab. 1 the different estimates of the dynamic aperturerg,

Ta,q @nd r ,; are compared to the estimate r,, », s, COM-

puted with 20 stepsin each variable. The results show that,

due to the high distortionin phase space, the estimate r is
really imprecise. On the other hand, Methods 2 and 3 pro-

vide a better estimate, even if the errors are considerably

higher than in the other cases; thisis probably due to the
strong nonlinearities of these models.

5 CONCLUDING REMARKS

In this paper we have presented three methods to compute
the dynamic aperture and to estimate the associated errors.
The optimization of the integration steps have been dis-
cussed aswell.

Method 2 and 3 have given good results showing that thede-
pendence on the phases and on theratio of emittances can
be crucid for obtaining a precise estimate of the dynamic
aperture for realistic models.

As these numerical results are strongly model—dependent,
we believethat for each model one should carefully test the
relevance of these effects to choosethe best compromise be-
tween accuracy and CPU time.
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