EVALUATING HIGH ORDER RESONANCES USING RESONANT
NORMAL FORMS*

E. Todesco, INFN, Sezione di Bologna
and
F. Schmidt, CERN, Geneva, Switzerland

Abstract

Resonant normal forms allow to study various aspects of
resonances up to high orders. We apply these techniquesto
evaluate resonances in four phase space variables. Thein-
put isatruncated one-turn map derived from standard track-
ing codes. A code automatically findsfixed linelocationsin
phase space for resonances up to adesired order. Theidland
widths and the island tunes of these resonances are calcu-
lated as well. As a check, it is shown to which extent re-
sultsfrom first order perturbation theory can be reproduced
and how well the predictionsof resonant normal form agree
with tracking simulations.

1 INTRODUCTION

The comprehension of the relation between resonances,
nonlinearities, tuneshifts and dynamic aperture in four-
dimensional betatronic motionisavery difficult task. The
dynamic aperture is usually determined through numerical
integration based on tracking [1, 2]. Theoretica methods
on the other hand, i.e. the perturbative theory based either
on Hamiltonian flows [3, 4, 5] or on symplectic map-
pings[6, 7, 8, 9], providealot of anaytical information on
the detuning and on the features of the resonances.

In the case of unstable resonances, the dynamic aperture
isusually determined by the hyperbolic resonant orbits, i.e.
fixed lines[10, 11, 12, 13]. The stable resonances, on the
other hand, feature families of islands that do not limit the
stability domain, and therefore there is no direct relation
with the dynamic aperture. Severa studies have shown,
however, that the anaytical indicators extracted through
perturbative tools can be well-correlated with the dynamic
aperture: for instance, a minimisation of the amplitude-
dependent detuning has been used to cure the effect of the
systematic errors [14], and the correction of resonant driv-
ing terms has been proposed to sort therandom errors[5]. In
arecent study concerning magnet sorting strategiesto opti-
mise the dynamic aperture[15], asystematic analysis of the
correlations of the analytical quality factors with the short-
term dynamic aperture has been carried out for an LHC-like
cel lattice.

During thepast years, arbitrary order codes have been de-
veloped to compute perturbative series (normal forms) of a
generic truncated one-turn map [6, 7, 9]. More recently, a
code has been devel oped to anayse theinterpol ating Hamil -
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tonian of the resonant normal form [16], and to provide at
arbitrary order al thefeatures of theresonance[17]. Inthis
paper we give a check of the analytical results of this code
through tracking for afour-dimensional model of LHC that
includes al the errors and imperfections. We show that for
unstable resonances one can determine the position of the
hyperbolicfixed lines, and that the contributionof the higher
orders can be very significant. Moreover, we analyse some
stableresonances, finding agood agreement between thean-
alytical and the numerical evaluations of theisland area.

2 PERTURBATIVE APPROACHESTO
NONLINEAR MOTION

The betatronic motion is described by an Hamiltonianin a
four-dimensional phase space (z, p, ¥, py) With aperiodic
dependence on the azimuthal coordinate s. The quadratic
part corresponds to Hill equations and the solutions can be
written in terms of the Courant-Snyder coordinates.

2.1 Classical perturbative theory

Using the method of the variation of constants, one substi-
tutesthelinear solutionin the complete Hamiltonian, where
now the constants of the linear motion e, €y, ¢4, ¢, be-
come the new phase space variables, and one obtainsa new
Hamiltonian H;. Then one can apply the perturbative ap-
proach[3] andtransform H; toasimpler formthat canbeei-
ther dependent on the emittances only (nonresonant theory),
or aso on alinear combination of angles (resonant theory).
The perturbative parameters are usualy chosen to be the
gradients of the nonlinear elements. The first order approx-
imation [4] corresponds to neglecting in Hy al the terms
that depend on the angles with the exception of the resonant
combination that shall be analysed: this approach provides
very simple and useful explicit formulas. However, there-
sultsmay not be accurate enough when the higher ordersare
relevant.

2.2 Normal form theory

The approach based on transfer maps and normal forms has
some significant differenceswith respect to the previous ap-
proach. First of al, one selects a particular section of the
machine and only the intersections of the trgjectories with
that section are considered. Moreover, the perturbative pa-
rameter isthe distance to the closed orbit, i.e. the contribu-
tionsare ordered according to the powers of the coordinates



and not to those of the gradients. The perturbative construc-
tion is based on two steps. Firstly, an exactly symplectic
map is associated to each element, and the one-turn map is
built as the composition (and truncation) of all the maps of
the lattice. The truncated map containsal theinterference
terms between the nonlinearities up to the truncation order.
Secondly, the one-turn map istransformed to another more
symmetric map, the normal form, which is written as the
map at integer times of an interpolating time-independent
Hamiltonian. The usefulnessof thisHamiltonianistwofold:
it providesthe integrals of motion and al the analytical in-
formation about tuneshifts and resonances.

A major advantage of the map approach isthat arbitrary
order codes for the computation of both the one-turn map
and theinterpol ating Hamiltonian can be built. An overview
of the normal form theory can be found in [9]; the specific
cases of four-dimensiona mappingsistreated in[11, 16].

3 APPLICATIONSTOLHC
3.1 The mode

Weconsidered theLHC | atticeversion 4, with all thenormal
systematic errorsand both chromatic and systematic correc-
tors. The integer part of the linear tuneis set to 63 in both
planes. The fractional part of the tunewas fixed to different
values to check the reiability of the resonant perturbative
tools.

3.2 Resonance (3,0)

Wefixed thelinear tuneto @, = 63.3333and Q, = 63.31,
close to the resonance 3Q, = 190. The nonlinear emit-
tance p, isthesecond invariant, and thereisafamily of hy-
perbolic fixed lines (i.e. fixed points x 1D tori) that limit
the stability boundary. Using the lowest order approxima-
tion, the position of the fixed lineisindependent of p,; this
isequivalent to the first order approach in classical pertur-
bativetheory [4]. In Fig. 1 we plot the position of the hyper-
bolicfixed lineseval uated through resonant normal formsat
order 5 in the space of the nonlinear emittances p; and p,.

The two solid lines correspond to the maximum and to the
minimum distanceto the origin of the separatrix inthe plane
givenby afixed p,; thefirst order results of classical pertur-
bative theory are plotted for comparison (dotted line). The
higher orders provokeacollapse of the hyperbolicstructures
on p; = 0 for positive p,. In Tab. 1 we give a numerical

check of the position of one of thehyperbolicfixed lines(in-
dicated by asolid circlein Fig. 1). Thefirst order classical

perturbative theory using HARMON [1, 2] is compared to
the normal form results at different orders, and to a numer-

ical search of the hyperbolic fixed line based on tracking.

The lowest order normal form agrees with HARMON, but
both are afactor two larger than the val ue obtained through
tracking. However, taking the normal form to order 5 this
difference reduces to a mere 4%.

Table 1: Position of one of the fixed lines for resonance
(3.0

& & z z
Harm. 0.0263 0.0000 0.0599 0.000
NF-2 0.0257 -0.0026 0.0599 0.000
NF-5 0.0117 -0.0012 0.0599 0.000
Track. 0.0113 -0.0011 0.0599 0.000
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Figure 1: Minimum and maximum distance (solid lines) of
the separatrix due to resonance (3, 0) compared with first
order classical perturbativetheory (dotted line) in the space
of nonlinear emittances

3.3 Resonance (1,2)

The same analysiswas carried out for the coupled resonance
Q; +2Q, = 190: wefixed thelinear tuneto Q, = 63.28
and @, = 63.3599. Inthiscasethesecondinvariantisgiven
by 2p1 — p2, and one can prove [13] that there is a fam-
ily of hyperbolic fixed linesthat arise from the resonance.
Fig. 2 shows the minimum and the maximum distance of
these fixed lines from the origin (solid lines). In Tab. 2 we
give the value of the intersection of the invariant manifold
of one of thefixed lines(indicated by asolid circlein Fig. 2)
in the plane p, = p, = 0. The disagreement between nor-
mal form at order 5 and trackingislessthan 1%. Inthiscase
the first order approximationis already very good.

3.4 Higher order resonances

In the case of resonances of order higher than four, the mo-
tionisstablein generic cases creating aone-parameter fam-



Table 2: Position of one of the separatrices for resonance
(12

x x’ z z

NF-2 0.0360 0.0000 0.0505 0.0000
NF-5 0.0353 0.0000 0.0496 0.0000
Track. 0.0354 0.0000 0.0496 0.0000
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Figure 2: Minimum and maximum distance of the separa-
trix due to resonance (1, 2) in the space of nonlinear emit-
tances

ily of idands. Theidand width is changing with the second
invariant, and is therefore strongly dependent on the posi-
tionin phase space. Thelist of theanalysed resonances and
of the selected linear tunes is given in Tab. 3. In the last
two columnswe givethe value of thewidth of theisland in
the physical space (z, z) for afixed value of the second in-
variants. Inall cases thenormal form serieswere truncated
at two orders higher than the first significant order, i.e. or-
der 6 for the (5,0) and (1, —4) respectively and order 10
for the (9, 0) resonance. The agreement of the widths can
be considered very satisfactory. It must be pointed out that
it cannot be predicted, apriori, when thehigher ordersof the
map arerelevant to determinethewidth of aresonancetothe
stated precision. For instance, the width of theisland evalu-
ated for the (9, 0) resonance at order 8 is0.45, i.e. more than
threetimesthe value computed at order 10, which agrees so
well withtracking. For all resonances, studiedinthisreport,
we found that when the normal form series were truncated
at two orders higher than the first significant order the ac-
curacy of the computation was alwaysincreased. However,

we could not use much higher orders so as to avoid diver-
gences of the perturbative series. We a so checked the posi-
tion of the éliptic and of the hyperbolic fixed lines and we
found that the normal form predictionswere accurate.

Table 3: Comparison of some island widths

Resonance Qs Q, Tracking NF
(5,0) 63.203 63.310 0.1764+0.001 0.178
(1,—-4) 63.280 63.315 0.15640.017 0.137
(9,0) 63.220 63.310 0.01240.001 0.014

4 CONCLUSIONS

The implemented normal form tool has proved to be very
useful to determinethe network of resonances and the global
dynamics in phase space. The higher order effects can be
very relevant, and are automatically takeinto account by the
normal form codes[16]. The agreement withtrackingisex-
cellent and the perturbative methods were shown to be ef-
fective for all the analysed resonances (i.e. up to 9-th order
resonances). Thehigher ordersare sometimesvery relevant,
and have awaysincreased the accuracy of thecomputations
when the normal form series were truncated at two orders
higher than thefirst significant order.
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