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Abstract

We present a general, paraxial study of triple focusing (i.e.,
stigmatic and non-dispersive) index-free dipole magnets.
The transcendental equations which describe such magnets
lead to a second-degree polynomial equation. The two real
solutions of this equation correspond to magnets having ei-
ther one or no intermediate focal point in the vertical direc-
tion. The first-order optical properties of the physical solu-
tions are studied.

1 INTRODUCTION

After the focusing properties of inclined entrance and exit
faces of dipole magnets were discovered, the possibility of
designing double focusing (DF, i.e., stigmatic) deflecting
magnets became apparent [1, 2]. In general, these magnets
also disperse the beam; that is, particles with different mo-
menta entering on a common trajectory follow different tra-
jectories after leaving the magnet.

It is obvious that the dispersion increases inside a mag-
net up to a certain deflection angle of the particles, and then
decreases. Therefore, it is possible to design triple focusing
(TF, i.e., stigmatic and non-dispersive) dipole magnets.

Several examples of such magnets have already appeared
in the litterature [3, 4, 5, 6]. In each case, the choice of a
particular configuration has led to a simple solution of the
equations that define TF magnets. The magnet described in
[3, 4] has a deflection angle of 270o and a parallel incident
beam. In [6], a solution is obtained in the particular case of
symmetric magnets. In [5], a solution is obtained through
a numerical computation. No complete study has been pre-
sented yet, as “the transcendental equations are quite un-
wieldy” [5].

More recently, interest in TF magnets has been renewed
for their use in bunch compression [7, 8], since the time of
flight through the magnet depends on the momentum of the
incident particle.

TF magnets are also useful when the path length of the
particles must be minimized. The present work has, in fact,
been triggered by the need for non-dispersive and stigmatic
injectionof an electron beam into a gas vessel for the plasma
wave acceleration experiment at the Ecole Polytechnique
[9]. In this experiment, the use of a combination of three
magnets would have resulted in too long a path in the gas and
thus to an intolerable amount of scattering of the injected
electrons before they reach the plasma.

We present a general study of triple focusing, dipole (zero

index) single magnets[10]. We use Enge’s paraxial formal-
ism in the approximation of a small air gap with the same
notation as in [11].

2 PARAXIAL DESCRIPTION OF TF
MAGNETS

A dipole magnet is usually described by the following pa-
rameters [11]: the straight drift length A (B) before (after)
the magnet, the radius of curvature R of the particles, the
angle � (�) of the central ray with respect to the normal on
the entrance (exit) face of the dipole, and the deflection an-
gle'. All quantities of dimension length can be normalized
to the radius of curvature, in which case they are denoted
by a lower case letter, e.g. a = A=R. The normalized drift
lengths are called arms here. Hence, the set (a,b,',�,�) de-
fines a dipole magnet.

This parametrisation might seem counter-intuitive. In
practice, one would rather position a source with a given
beam direction in front of a magnet with given dipole an-
gle !, thus fixing a and �. The deflection and exit angles
' and � would then be determined by !, a, and � and the
position of the exit face of the magnet. On the contrary, it
appears here as if one designs the magnet around a given
central trajectory.

Let (O; x; y; z) be the moving frame of the central ray,
in which (Ox) is the tangent, (Oy) the normal, (Oz) the
bi-normal, and s is the curvilinear coordinate. The plane
(Oxy) is called the median or horizontal plane of the mag-
net, and the direction of the magnetic field (Oz) is called
the vertical direction. The angles are written y0 = dy=dx,
and the momentum deviation �p=p is denoted �. In the
paraxial approximation, the particle coordinates in phase
space (y2; y02; z2; z

0

2; �) at s = s2 are linear functions of the
entrance coordinates in phase space at s = s1. The ele-
ments of the transfer matrices are written in short form, e.g.
(yjy) = dy2=dy1.

In this notation, a TF magnet is described by the system
of equations:

(yjy0) = 0; (zjz0) = 0; (yj�) = 0; (1)

where each matrix element depends on the five parameters
defining the dipole.

The transfer matrices for transport inside the magnet are
given in [11]. The transfer matrices from the object to the
image are simply obtained as the product of the matrices of
the drift length b, of the magnet, and of the drift length a.



Using the notations t� = tan� and t� = tan �, the system
of equations (1) then reads:

0 = sin' + (cos'+ t� sin')a + (cos'+ t� sin')b

+
�
(t�t� � 1) sin' � (t� + t�) cos'

�
ab (2a)

0 = ' + (1 � t�')a+ (1� t�')b

+(t�t�'� t� � t�)ab (2b)

0 = 1� cos' + b sin'+ b(1� cos')t� (2c)

This system of equations fixes three of the five parameters
which describe the dipole.

3 SOLUTION OF THE SYSTEM OF
EQUATIONS

The system of equations (2) is transcendental only in ' and
otherwise linear in a, b, t�, and t� . Therefore, we found it
convenient to solve the system of equations (2) for the en-
trance and exit angles � and �.

First, we solve (2c) for t� :

t� = �

�
1

b
+ cot (

'

2
)

�
(3)

Next, we substitute the expression obtained for t� in (2b)
and solve for b:

b = �2
a+ (1� at�)'�

a+ (1� at�)'
�
cot (

'

2
) + 1� at�

(4)

Then, we insert (3) and (4) into (2a) and solve for t�:

t� = �

�
1

a
+ cot (

'

2
)

�
(5)

Finally, we substitute the expression obtained for t� in (4):

ab cot (
'

2
)(' cot (

'

2
)+2)+2(a+b)(' cot (

'

2
)+1)+4' = 0

(6)
The system of equations [3,5,6] is explicitly symmetric
in entrance and exit, i.e., invariant under the exchange
(a; �)$ (b; �), obviously because of the symmetry under
time reversal.

Introducing the parameter � = ' cot ('
2
) and the arm ra-

tio g = b=a, and substituting u = a=', we re-write equa-
tion (6) in a more compact form:

g�(�+ 2)u2 + 2(g + 1)(�+ 1)u+ 4 = 0 (7)

This second-degree polynomial equation in u has two so-
lutions which depend on the two free parameters g and �

(� < 2 for 0 < ' < 2�).
We are looking for solutions of (7) describing physical

magnets, i.e., magnets with positive arms and therefore g >
0, and u real and positive. The ratio g being positive, the
discriminant of equation (7) �0 = (� + 1)2(g � 1)2 + 4g
is always positive. Therefore, equation (7) always has two

real solutions u+ and u
�

. In order to study their sign, we
form their product p and their sum s from the coefficients
of (7):

p =
4

g�(� + 2)
s = �

2(g + 1)

g
�
(�+ 1)

�(�+ 2)
(8)

We give the sign of p and s, and thus of u+ and u
�

in the
following table:

� �1 �2 �1 0 2

' 360
o

232:5
o

180
o 0

p + � +

s + � j + �

f0g u+ > 0 u+ > 0 u+ < 0

f1g u
�

> 0 u
�

< 0 u
�

< 0

Physical solutions only exist in the interval � < ' < 2�,
corresponding to negative values of �. We obtain exactly
one physical solution in the interval � < ' < '0, where '0
is defined by'0 cot (

'0
2
) = �0 = �2, that is,'0 � 232:5o,

and two physical solutions in the interval '0 < ' < 2�.
The two branches of solutions correspond respectively to

magnets having either no or exactly one intermediate focal
point in the vertical direction, and are therefore denotedf0g
and f1g. Magnets of both classes also have an intermediate
focal point in the horizontal plane. As the dispersion at this
point is large, momentum selection may be done easily us-
ing collimating slits.

We calculate the parameters a, b, �, �, and the dipole
angle ! analytically as functions of ' and g using equa-
tions (3),(5), and (7), and present them in figure 1. The sym-
metry between entrance and exit appears clearly in figure 1a.
The dipole angle ! = ' + � + � is obviously symmetric
under exchange of g and 1=g.

Figure 1b shows the above parameters as functions of '
for arm ratios greater than unity1. One observes that the
arms are longer on branch f1g than on branch f0g. The
magnet described in references [3, 4] is indicated by an open
square. Ray tracing of example magnets for branches f0g
and f1g are presented in reference[10].

4 OPTICAL PROPERTIES OF THE
SOLUTIONS

Magnification The horizontal and vertical magnifica-
tions are given by my � (yjy) and mz � (zjz) and are
equal to my = g and mz = �g(� + 1) � 2

u
[10].

Obviously, mz is positive for branch f1g, and negative
for branch f0g, depending directly on the existence of an
intermediate focal point in the vertical direction.

Of particular interest is the case where the image shows
no first-order distortion, that is, where the horizontal and
vertical magnifications have the same absolute value: mz =
�my , that is, mz = �g. Using the above expression, we

1The graphs for arm ratios smaller than unity may be obtained by in-
terchanging a and b, and � and �.



Figure 1: Variation of a,b,�,� and ! with g and '. Solid:
branch f1g, dashed: branch f0g.

obtain u = �2=g(� + 1 � 1). Substituting this expression
foru in equation (7), we obtain g = 1. Hence, the condition
for identical magnifications in the horizontal and vertical di-
rections is independent of '.

Angular dispersion The angular dispersion is (y0j�) =
sin'+ (1� cos')t� , that is, (y0j�) = (cos'� 1)=b here,
and is negative for ' < 360o. It is therefore impossible
to design strictly achromatic, i.e., non-dispersive and angle
achromatic, DF magnets with finite arm lengths.

Time of flight The variation � of the time of flight of
the particles is described in the same paraxial formalism by
a development to first order around the central trajectory.

The coefficients describing the dependance of � on posi-
tion and angle in the vertical direction vanish for symmetry
reasons.

In the horizontal plane, the coefficient describing the de-
pendance of � on angle is (�jy0) = (1� cos') and is pos-
itive for ' < 360o. The coefficient describing the depen-
dance of � on position is (�jy) = sin' + (1 � cos')t�,
that is, (�jy) = (cos' � 1)=a here, and is negative. The
coefficient describing the dependance of � on momentum is
(�j�) = ' � sin', and is positive.

We can see that it is impossible to design isochronous TF
magnets, with finite arm lengths.

Special case of zero arm ratio (g ! 0) A case of
practical interest is the deflection of a parallel beam with a
large energy spread and its focusing on a small spot. This

situation corresponds to the limit g ! 0, u ! 1, and
gu finite. We then read equation (7) as an equation in gu:
�(�+ 2)(gu)2 + 2(�+ 1)gu = 0. The non-trivial solution
(branch f1g) is: gu = �2(�+ 1)=�(�+ 2).

For the particular value ' = 270o, that is, � = �', we
obtain b ! 2(3� � 2)=(3� � 4) � 2:74, a ! 1, � !

��'=2, that is, �! 45o, and tan � ! 3�=2(3��2), that
is, � ! 32:4o. This magnet has been presented in [3, 4].

Special case of a unit arm ratio (g = 1) For g = 1,
we get a = b and� = �: the magnet is symmetric. We then
get unit absolute magnifications: my = 1 and mz = �1.
The solutionof equation (7) is particularly simple here, with
�0 = 4, u = �2=� (branch f0g) and u = �2=(� + 2)
(branch f1g). The particular value ' = 270o gives a =
b = 2, � = � = arctan (1=2) � 26:6o on branch f0g used
in reference [9].

5 CONCLUSION

We have presented a general study of TF, index-free, sin-
gle dipole magnets. We have written the paraxial equations
describing TF magnets in the approximation of a small air
gap.

We have solved the system of three equations in five vari-
ables, which leads to a second-degree polynomial equation.
The solutions describe a two dimensional surface which is
parametrized by the angle of deflection of the particles and
by the arms ratio.

Physical solutions exist in the interval 180o < ' <

360o only. We obtain one physical solution in the interval
180o < ' < 232:5o, and two physical solutions in the in-
terval 232:5o < ' < 360o. The two branches of solutions
correspond respectively to magnets having either none or
only one intermediate focal point in the vertical direction.
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