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Abstract 

Real-time operation of adjustment procedures set some 
specific limitations on possible algorithms. In the frame- 
work of linear model, an analysis of requirements to al- 
gorithms due to instability of correctors, their operation 
range and precision of mathematical model, is done. The 
coefficient of transport system adjustability, allowing to 
compare different algorithms, is defined. On this basis, the 
necessary condition of adjustability of an beam transport 
system is derived. Examples of analysis of beam direction 
adjustment in the real transport system are given. 

1 INTRODUCTION 

As any control system, an accelerator control system is 
aimed to 
1. monitor accelerator and beam parameters; 
2. adjust these parameters. 
In our opinion, recently the major efforts have been direct- 
ed onto monitor system developments, where modern com- 
puter technologies such as distributed data bases, graph- 
ics, etc. were intensively used, and much less attention 
was paid to the problems of online adjustment of beam 
parameters. 

With keeping this in mind, we intend here to consider 
some aspects of the analysis of algorithms for the online 
adjustment of beam parameters. The goal of our consid- 
eration is to develop tools to answer the question: can the 
given algorithm keep beam parameters in specified limits 
under the condition that the parameters of both the in- 
put beam and magnets used for adjustment are changed 
spontaneously in time. 

2 ADJUSTABILITY COEFFICIENT 

Let us consider some beam transport system (BTS), whose 
current state is described by array y, depending on the in- 
put beam parameters z, and corrector parameters Z. Then 
the adjustment procedure may be treated as an online so- 
lution of a system of, generaly speaking, nonlinear equa- 
tions: 

Y(G 2) = Y*, (1) 

where array y* characterizes the required state of BTS. 
Furthermore, we assume that linearization of equations 

(1) is valid and will consider the following system of linear 
equations: 

To be sure in the capacity of the algorithm to adjust 
beam parameters, we should analyze two very closely re- 
lated, but nevertheless different, points: 
1. numerical stability of the equations; 
2. requirements to the algorithm due to real time opera- 
tion and other technical limitations. 

The first point is rather traditional and the urgency of 
such an analysis is transparent; neither the matrix A, nor 
the right-hand side of equations (2) are known exactly. To 
estimate how this might affect the solution of the linear 
inverse problem, the condition numbers[l] defined as 

co&A = ljAj[ . llA-‘ll, (3) 

or more adequate here statistical analogues of condition 
numbers[2], can be used. At the same time, adjustment 
algorithms have some peculiarities. First of all, to some 
extent we are not interested in the obtained values of Z; 
the only important thing is how close is the state of BTS 
y(z) to the required value y*. And secondly, as a rule, 
solution of system (2) is obtained by iterating with some 
matrix B-l, close in a sense to the matrix A-‘. If 

(II - AB-‘11 5 

< cod(A) . 
[IA-’ - I?-‘[1 < E. cod(A) < 1, (4) 

/IA-‘II - 1 - E . cond(A) 

the iterations converge to the required 

The obtained relation guarantees only numerical COII- 

vergency of the algorithm, but while deriving it we have 
neglected some very important, from the practical point 
of view, details. First of all, we are not interested in the 
values of the corrector parameters z, while in practice the 
range of permissible values is limited. Secondly, we implic- 
itly suppose that the corrector parameters do not change 
spontaneously. And, last but not least, an adjustment al- 
gorithm should operate in real time. So, besides numerical 
stability we have to analyze technical capacity of the algo 
rithm to adjust the beam. 

To this end, let us define the following quantities: 

. the corrector stabilization level, i.e. the magnitude of 
maximum spontaneous deviations of corrector param- 
eters I from the prescribed ones in the operation time 
of one algorithm loop: 

&t = tE(;;~&*l II44 - dto)lL 

Az+z=y*, A = {$. 
, 
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where z(t) are corrector parameters at the moment t, 
tk - the operation time of one algorithm loop; 



l the input beam stabilization level, i.e. the magnitude 
of the spontaneous deviations of z from prescribed 
ones in the operation time of one algorithm loop: 

Tar = tE[$ygtbl Ilz(t) - zOll; 

l the required beam state stabilization level, i.e. the 
magnitude of permissible deviations from the required 
state Y* during the whole operating period: 

&St = tEp,yndl Ilv(t) - Y’k 

l the width of the corrector operation range: 

6 moz = .yz 112: - 41, 3 P 

where D, means the corrector operation range; 

l the width of the input beam parameters range: 

rmaz = 1 yyg IIZ - Z’lL 1 1 

where D, is a set of permissible values of the input 
beam parameters; 

l the width of operation regimes: 

e‘ma, = y y$ IIY - Y’ll, t Y 

where D, is a set of possible operation regimes. 

To ensure that in the operation time of one loop of the 
algorithm the instability of the input beam and corrector 
parameters will not cause impermissible deviations of the 
output beam, we have to demand that: 

IIAYII 5 IWtll + llA4l I IMI IIW + lP4l I 

5 IIAII . bt + ~st I ~st 
or 

Eat - Yat IIAII I ---&-- (5) 
On the other hand, we should provide for correction of 
any deviation of the input beam, as well as possibility to 
change operation regime: 

llA4i = lb-‘CAY - Az)lI 5 IHA-‘II . (IIAYII + II‘W 5 

2 lIA-lll . (+xz + mm) 5 &nm. 
As a result, we obtain: 

IlA-‘II 5 cma;y; . (6) mar 

It should be noted that the quantities AZ appear in the 
derivation of both relation (5) and (6). However, they 
have different meaning. In the first case these are the 
deviations in a short period of time - for example, small 
oscillatrons around some mean values. In the second one 

these are the deviations after the whole operation period, 
including both above-mentioned short period oscillations 
and long range (may be very smooth in time, but large in 
magnitude) input beam deviations. 

It is convenient to combine relations (5),(6) in a single 
adjustability criterion: 

where 

IlAll. IIA-‘li E cond(A) 5 mud, (7) 

mad = (Eat - rat) * La, 
(Gnaz + rmaz) . bat. 

(8) 

In the following, we will call this quantity the BTS ad- 
justability coefficient. 

Thus, we have obtained the necessary’ condition of ad- 
justability of BTS by means of the given algorithm. It 
should be emphasized that, although the obtained rela- 
tion includes a condition number, it is not relevant for the 
accuracy of the solution of (2). This relation means a tech- 
nical restriction on the instability of parameters, the range 
of operation regimes and the algorithm operation time. Its 
nonfulfillment means that one cannot guarantee that the 
required BTS state will be held at the required stabiliza- 
tion level, although system (2) is well conditioned and the 
matrix A-’ is known with high accuracy. 

Moreover, adjustability coefficient is independent of the 
matrix A and can take arbitrary values, while the condition 
number is always greater, or equal to unity. So, if the 
adjustability coefficient is less than unity, there exists no 
algorithm described by system (2) permiting to adjust the 
given BTS at given tolerances. 

The condition (7) was obtined using absolut values of the 
tolerances and instabilities, but it can be easy rewritten in 
statistical terms [3]. 

To demonstrate the application of the approach de- 
scribed, let us consider as an example the analysis of two 
schemes of beam location adjustment. These schemes (see 
figs. 1 and 2) have been studied experimentally and the 
results were reported in [4]. The goal was to pass a beam, 
using three bending magnets &, through three given space 
points determined by coordinate detectors &. 

In the frames of the first order Brown formalism[5], the 
beam displacement from the reference trajectory may be 
written as[6] 

f= T.& + s’- H62, (9) 

where 

H = 

t 

Tlz(l)al ,.. Tlz(nh t 
T22(l)a1 . . . T22(n)a, 1 

T is the total transfer matrix, & = (&,tb), < = (t,[‘) 
- beam phase coordinates at BTS input and output re- 
spectively, E and <’ - the space and angular coordinates, 
respectivly, S - the term related to particle momentum 
deviation, 6.@ - magnet field deviations, T(i) - the ma- 
trix, describing beam transportation from the center of the 

‘not sufficient, because (7) does not entail the validity of inequel- 
ities (5),(6) 
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Figure 1: Beam location adjustment. Scheme 1. 

i-th magnet to BTS output, (Y, - bending angles in the 
i-th magnet. 

Then the problem of beam location adjustment may be 
formulated in terms of system (2), where A = {Z’lz(k,i)), 
and T(k,i) is the matrix, related to beam transfer between 
the center of k-th magnet and the i-th detector, y = {&} 
are beam space coordinates at detectors, z = Z’(i)& + s’. 

The layout of detectors and corrector magnets for the 
first setup is shown in fig. 1. In this case, we have 

A = 

i 

cr12(l,i) z2(2, i) 0 
TIZ(h 2) Tl2(2,a 

T12(l, 3) %2(2,3) T1aP3,3) IT 
(10) 

- - 
det(A) = 2’~~(3,3).Trs(l,2) .Trs(l,2). 

So, the weakest restriction imposed on this adjustment 
scheme is that there should be no “point to point” trans- 
formations between the first and second magnets, the first 
and second detectors, the third magnet and third detector. 

In the described case, experimental measurements gave 
the following matrix: 

A= 
0.011 0.73 0. 
0.013 0.46 0. 
0.021 -0.02 0.37 

To estimate the numerical stability of the system, let us 
calculate the condition number in the 6 norm. In ac- 
cordance with (3), one has condzli; = 183.3. So, the sys- 
tem is fairly stable. The smallness of the condition num- 
ber allows, as follows from (7), to hold the given BTS 
to very close tolerance. Although Ref. [4] does not pro- 
vide all necessary information, but under rather realistic 
assumption that bmoz/list m 104,y,,, N 10 mm and ne- 
glecting E,,,, we obtain that beam may be adjusted with 
s,t = T.,~ + 0.18mm. 

In spite of all that the experiment yielded a negative 
result - iterations have not converged. In the author’s 
opinion, the reason of divergency is smal!ness of the dis- 
tance between the first and second magnets which leads , 
as follows from (lo), to the smallness of the matrix deter- 
minant. But, as is clear from the calculations of condition 
number the matrix is far from being singular. The real 
reason of divergency becomes clear if we take into account 
the matrix measurement accuracy: 

AA= 
( 0.001 0.002 0.002 0.03 0.02 0.02 0.02 0. 0. 

Figure 2: Beam location adjustment. Scheme 2. 

Direct calculations yield E = llAAlj/llAll N 5. 10v2, and 
from 

plklJ 6 . cod(A) 
11~11 ’ l-~.cond(A) + 

E. [~ond(A)]~ 
1 - t: 1 cod(A) ’ 

we obtain that the relative error is 
w I? 21 5, i. e. not a 

single digit in the solution we have obtained can be relied 
upon. 

The second scheme of interest is represented in fig. 2. 
The matrix of the related system is 

A = 

( 

z2(l, 1) 
T12(1,2) Tl2P2,2) T12P3,2) 

T12(1,3) T12(2,3) T12(3,3) i 
’ 

The measurements revealed the following values for the 
matrix elements and their errors: 

( 

0.46 0. 0. 
-0.02 0.37 0.02 
-0.05 -0.3 0.1 I( 

Ifi 
0.002 0. 0. 
0.002 0.02 0.02 

i 0.002 0.02 0.02 

In this case, the condition number of the matrix is 
condz/i; = 1.9, and, as a result, the relative error of the 
solution is no more than 0.33. Indeed, as the experiment 
shows, the iteration process converges and the required 
beam adjustment is achieved. 

3 CONCLUSION 

Thus, the approach proposed for analysing of online ad- 
justment procedures is a simple but rather powerful tool 
allowing at the developmental stage: to compare different 
adjustment schemes; to establish bottlenecks; to estimate 
the required precision of measurements. 
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