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Abstract 

In order to decrease the electron energy spread in the 
ELSA accelerator, an RF feedback loop has been 
implemented. Because the klystron works close to the 
saturation regime, its response is non-linear, and the 
loop cannot be correctly optimised with the classical 
linear model. Thus, we changed the hypothesis of 
linearity to differentiability in a way to predict limitations 
and performance. This RF loop.has been included in an 
adaptive feedforward system. This combination gives 
an amplitude stability of 0.05%. Theory, practical 
realisation and results are presented. 

1. Introduction 
The ELSA EEL [ 1] is constituted with a IX MeV accelerator 

(21 driven by a single 433 MHz klystron which can deliver up 
to 6 MW during a maximum 200 ps pulse. As the stability of 
electron energy and phase is fundamental to obtain a low 
beam emittance [3] suitable for an FEL, an adaptive 
feedforward system 141 had been previously implemented to 
cancel RF-switching and beam-loading transient effects. Of 
course, such a system cannot deal with random pulse to pulse 
jitter. As this jitter was non-negligible in the ELSA 
accelerator, we decided to improve its stability by a direct RF 
loop. 
The principle of direct RF feedback is simple: the source 

signal is combined with an opposed phase output signal. The 
resulting small signal is amplified and sent to the high-power 
amplifier (fig. 1). 

phase shifter 

Fig. 1. Direct RF feedback on an accelerator. 

2. Linear RF feedback model 
In the linear model, the theoretical performance of such a 

loop is a noise reduction factor equal to the open loop gain 
plus one. Nyquisl’s theory shows that the main limitation of 
the open loop gain results from the quality factor of the cavity 
(Q) and the delay along the rest of the loop (7 =d@dm) 
which results from cable length and amplifier bandwidth. If 

this delay is long compared to the filling time of the cavity (7 

>>Q/o,), the open loop gain is then [5]: 

G = mQn / o,,z, (1) 

in which o0 is the RF angular frequency and m is the gain 
margin coefficient. This coefftcient should not exceed 0.5 to 
insure robustness of the system. 

3. Non-linear analysis 
In the previous model, the high-power amplifier is assumed 

to work in its linear regime. But, because of their price, high 
power devices usually work close to their saturation point. In 
this regime, one can expect that the amplitude response is 
compressed, but that the phase is not (as the output phase 
must finally follow the input phase, at least for slow 
variation). Thus, if the low-level signal is phase g amplitude 
modulated, one can expect the high-power signal to be phase 
a& amplitude modulated at the same frequency. In the 
frequency domain, this means intermodulation between 
sidebands on both side of the carrier. 
Let us call 7’ the transfer function of the RF chain, x and y 

being the input and output signals. respectively. This can be 
written as: 

y = T(x)+ (-4 

in which the operator ?‘may be non-linear. If the input signal 
is slightly modulated, x becomes x+iix. Then, the output 
signal y becomes yfdy. The hypothesis of differentiability is 
that & is linearly dependent on du; the linear operator 
involved is the Jacobian of the operator 7’ at a given working 
point x: 

Ay = Jac(T(x)) x Ax. (3) 

For a given modulation angular frequency dw, the Jacobian 
is a four complex coefficient matrix: 

in which AA and Acp represent the relative amplitude and 
phase excursions of the RF signal, respectively. The matrix 
coefficients a,b,c,d, represent dynamic response of the RF 
chain, i.e. the way modulation is transmitted; these 
coefftcients depend on modulation frequency. 
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Let us assume that the RF chain output amplitude and phase 
have been adjusted (with adequate attenuator and cable 

in which x’ is the new input signal, G is a correction 

length) in a way that x=T(x) for the given working point x. 
operator, and H is a damping operator which prevents the 
algorithm from divergence. 

Let us also assume that the RF chain is looped through a 
perfect amplifier whose gain is -k, as shown in fig. 2. 

AX 

I < I I 

Fig. 2: Mathematical representation of the RF loop. 
The non-linear transfer function 2’ has been adjusted in a way 

that T(x) =x for the working point x. 

dy is then connected to Ar by : 

S-TAX = (I+kaT)Ay, (5) 

in which I is the identity operator. The stability of the loop is 
equivalent to imposing a finite quantity for dv, which leads 
(analogously to Nyquist’s theorem) to the condition: 

Fig. 3 Adaptive feedforward RF system 

The software can also work without correction, i.e. with 

The complex quantity q must not surround the (-l/k,@ G=O and H=Id. In that case, it can be a good tool to study the 

point, in which transfer function of any RF device. Thus, a new possibility 

,=(~)#$i . (6) 

was added to the software in order to measure the Jacobian of 
the RF device constituted by the klystron and the accelerating 
cavities in an open-loop configuration.(fig. 4). 

a.b,c,d, being the coefJicients of the matrix ZT. 

In the linear case, where the operator 7’is a constant for each 
angular frequency, no intermodulation occurs; so a=d=t(dw) 
and b=c=o. The above criterion becomes: The quantity t(Aa) 
must not surround the (-l/k,O) point, which is Nyquist’s 
theorem; k is then the open-loop gain. 

4. Open loop measurement using an adaptive 
feedforward system 
The above loop considered as an RF device has been 

included in an adaptive feedforward system [3], as shown in 
fig. 3. In this system, the output RF pulse y is analysed 
through an I/Q demodulator and digitised in a 2-channels 
acquisition board. The input RF pulse x is synthesised with 
an I/Q modulator commanded by a f-channels arbitrary 
waveform generator. A personal computer deals with these 
different acquisition and generation waveforms in an 
amplitude/phase format. I/Q to A/cp and reciprocal 
transformations are performed by the computer; all linear 
defaults of the I/Q devices (offset, amplitude and phase 
unbalancing), are taken into account and corrected in both 
directions. Amplitude and phase of input pulse are corrcctcd 
from pulse to pulse in a way to obtain the desired output 
pulse .vtWget. with the formula: 

x’ = H(x) + G(y-ytarpet) , (7) 
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Fig. 4. Measurement of an RF device transfer function. 

The input signal is successively phase and amplitude 
modulated; the output signal is analyscd in temts of phase 
and amplitude modulation. Doing this operation with various 
modulation frequencies allows us to compute the Jacobian 
matrix of the RF device for each modulation frequency. 
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5. Open loop results 6. Closed loop results and conclusion 
The Jacobian of the open loop RF chain has been measured Table 1 gives the stability without (open loop) and with 

between 10 and 300 kHz. The quantity q (as defined in (6)) (closed loop) feedback. Intra-pulse stability is defined as the 
has been derived and plotted versus frequency in fig. 5, and r.m.s. noise around the mean value in a single pulse. Pulse- 
in the complex plane in fig 6. The contour crosses the to-pulse stability is the r.m.s jitter of the mean value defined 
negative real axis approximately on {-0.07,O) for the worst above. 
determination of q. The choice of a 12 dB gain-margin sets 
the critical point 4 times further from the origin, i.e. on (- Table 1. .R.m.s jitters without/with feedback loop. 
0.2&O). This gives the value k=3.6 (i.e. 11 dB). intra-pulse stability pulse-to-pulse stabilitv 

loop amplitude phase amplitude phase 

1 10 100 1000 open 0.08% O.lY 0.15% o.40° 
0 closed 0.05% 0.15O 0.06% 0.15O 

As expected, pulse-to-pulse jitter has been reduced by a 
factor compatible with the loop gain. Intra-pulse stability, 
which corresponds to faster phenomena, was only slightly 
improved for amplitude. 
A similar system has been implemented for the 144 MHz-2 

MW-2 MeV RF chain of the injector cavity [6-71. In this 

-40 case, the open loop gain was 20 dI3, and the pulse-to-pulse 
jitter has been reduced from 0.050% to 0.015% in amplitude, 
and from 0.65” to 0.06’ in phase. 

1 10 100 1000 
0 ~-.--- The author thanks D.Dowell who convinced him of the 

necessity of such a loop. 
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