
Neural Networks and Orbit control in Accelerators*

Eva Bozoki and Aharon Friedman
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973

Abstract

An overwiew of the architecture, workings and training of Neu-
ral Networks is given. We stress the aspects which are impor-
tant for the use of Neural Networks for orbit control in acceler-
ators and storage rings, especially its ability to cope with the
nonlinear behavior of the orbit response to ‘kicks’ and the slow
drift in the orbit response during long-term operation. Results
obtained for the two NSLS storage rings with several network
architectures and various training methods for each architec-
ture are given.

1 INTRODUCTION - WHY NNETS?

Neural Networks, Nnet’s for short, are radically differ-
ent from standard software methods [l]. The outcome of
NNet’s does not depend on the programmer’s prior knowl-
edge of rules; Nnet’s can learn underlying relationships
even if they are hard to find and can solve problems that
lack existing solutions. Nnet’s can also generalize, they
are able to correctly process imperfect or incomplete or
noisy data. Knet’s are ideally suited to handle nonlinear
problems, since there are more parameters to adjust then
the total number of variables. Since the Nnet’s can con-
tinuously learn from it’s own mistakes, it can be also used
when the system’s behavior is drifting in time.

All these features makes Nnet’s highly suitable for orbit
correction in accelerators and storage rings, where the ac-
tual relationship between measured orbits (input set) and
the required orbit correction (out,put set) is nonlinear due
to the presence of sextupoles and other nonlinear elements,
and whrrct the orbit response of the system is not constant
in time.

2 ARCHITECTURE

Neural Networks consist of nodes and weighted and di-
rected connections between them. The connections can
be feedforward, feedback, recurrent or any combination of
those. Network can also differ in the way they are trained
to solve a problcrn; supervised learning and self teaching
networks [2].

In a feedforward network, what we will concentrate on
in this paper, the nodes are grouped in layers; there is one
input-layer, one out,put-layer and any number of hidden-
layers. 1 Each nodes in the input-layer receive one (en-

l IVork performed under the auspices of the U.S. Dept. of Energy
under contract no. DI:-ACOZ-7SCHOOO16.

’ Hidden 1 aycrs and/or ~‘~~urrent connections enable the Nrtets
to handle nonlinrar prohlrrns -~- A two layer feedforward network

vironmental) input signal, any other nodes can have ar-
bitrary number of inputs (which are the output of other
nodes). All nodes have one output signal, and any node
can have a threshold. The processing of the input sig-
nals to generate the output signal is taking place in the
nodes. Fig.1 shows a typical node, where oi is the output
signal of the i-th node with UQ synoptic weight between
the i-th and the j-th nodes, qj is the threshold and the
processing is represented by the fj function. Fig. 2 shows
three different, feedforward networks: (a) fully connected,
when each node of one layer is connected to each node in
the next layer, (b) shortcut connected, when all nodes are
connected to each other and (c) cascade network, which
will be discussed in Section 4.1.

‘lj
1
woj j-th Node

1

Ok%

Oi -

(I>

Oj = fj (49 Gj* ej)
-Oj

omY

pi = { Oi, i=k,m)
E’ig. 1: Schematic representation of a Node

input
layer

input
layer &$n Y&$ZY’

Fig. 2: Yetwork connections: (a) Fully connected, (h) Shore-ut
connected and (c) Cascade network.

When a set, of input signals, r’, is presented t,o t.ht Nnet,
then the output of each nodes propagates to every other

would not be able to handle nonlinear prohlmls

1589

node it is connected to and this output is modified by
the synoptic weight characterizing the connection between
those nodes. At the end of this propagation process a set
of output signals, 5, is emerging from the Nnet.

3 PROCESSING

In general terms, the following processing may take place
in a node (see Fig. 3). All the oi, i = k, m inputs to the
j-th node are processed by a lrunsfer func2ion to produce
the net input, aj. In most cases the transfer function is the
weighted sum (or product) of the individual inputs ’ :

;j = ffr(Oi, Wij) = ~ *ijOi
.

i

The net input is then processed by the activalion junction
to produce the aj activation function of the node:

aj = fjOCt(ij, r]j),

where qj is a possibly non-zero threshold value (bias).
There is an almost endless choice for activation value,
the most widely used being the step function, ramp func-
tion, sigmoid function and tanh function, as illustrated on
Figs.4.

The last step in the processing is provided by the output
function, which in most cases is identity or possibly clip-
function:

amin - if aj 5 Qmtn
Oj = fj0"'(aj) = Ctj OP = aj - amin < aj < ama+

Gnar - aj 1 ama,

Ok

) 0, J

0 .;? :

! i
I : !

net / activation
: input :

j
value /

transfer activation
function

output
function function

Fig. 3: Processing by a Node.

f(i) fii,
+L- h

c 7
z-1 z-1

step tanh

fci,

sigmoid

Fig. 4: Three frequently used activation functions

2hput nodes receive one input from the environment. Thus for
input nodrs the synoptic weight is 1 and the transfer function is
idrntity

4 LEARNING

Once the architecture, including the connections is
established, the synoptic weights have to be calcu-
lated/adjusted to ensure that the Nnet will produce the
right output-set for any given input-set. This is the learn-
ing phase. The two basic categories of learning are the
supervised and the self teaching methods. In the former,
training sets (consisting of I’ inputs and the correspond-
ing desired 0’ outputs) are presented to the Nnet and the
learning conti_nues until the difference between the 0’ ac-
tual and the 0 desired output of the Nnet is less then the
desired accuracy of the system. In our application, we will
compare such supervised learning methods.

In the unsupervised method the learning is by compe-
tition among neighbor nodes without any ‘teacher’. This
category includes the Hebbian and the Competitive - Co-
operative methods, like the Grossberg and ART methods,
to mention only a few. Unsupervised learning is mainly
used for classification and pattern recognition problems.

4.1 Strategies for supervised learning

Presenting an finput set to an untrained Nnet will pro-
duce after the first forward pass an tj = f(o, - 0,) error
in the j-th output node. In the error correclion learn-
ing methods, the synoptic weights are adjusted at each
iteration according to the < errors in the output nodes:
GWij Rd OiCj. In the reinforcement learning methods a
scalar tout error is calculated and the synoptic weights at
e.ach iteration are adjusted as 6wij R c,,t. In the stochastic
learning methods the 6wij’s are chosen randomly and the
ones, which minimize the ‘energy’ of the Nnet, are chosen
at each iteration.

A few of the error correction methods, the ones we are
using, are highlighted in the followings. 3

Vanilla Backpropaga2ion
This method is searching for the minimum in the error
surface by a generalized delta-rule. The synoptic weights
are adjusted at each iterative step as

Awij = 7]Oibj = l7Oi f,! Ej ;

where Sj = f~(;j) (Oj - Oj) if j is output node
xk bkwjk if j is hidden node

Enhanced Backpropagation
In this method a momentum term, CY, and a flat spot elim-
ination term, c, are used when searching for the minimum
in the error surface:

Awl:’ = voi6j + QAwE+,

Where 6j = [fi(ij)+C]
(0, - oj) if j is output node
Ck 6kwjk if j is hidden node

Quickprop
This method usrs infortrlat,ion on the curvature of t.he error

3Details on these mrthorls ran IIC f~~al~,i in [z]

1590

surface from the 2nd order derivatives and takes a direct
st)ep to the error minimum:

&f+’ =
sft+1)

‘I SC’) - S(w-1)
6~~~~ where S = s

‘WV

Backpercolation
In this algorithm the wij synoptic weights are changed
according to the cj node error and not according to the
error in the output layer.

Cascade
It can find the optimal number of hidden nodes needed
for a task. It starts with a network containing input and
output layer only, then minimizing the overall error of the
Nnet, it adds hidden nodes one by one from a pool of can-
didate nodes (see Fig. 2~). The actual training algorithm
can be any of the previously discussed.

5 ORBIT CORRECTION WITH NNET

In a circular accelerator or storage ring, the relationship
between the Oj kick introduced at the j-th corrector and
the Xi orbit change observed at the i-th orbit monitor is
given by the following equations [4]

Xi = d4ijOj ,i= l,Arm , j= l,N, (1)

where N, and N, are the number of monitors and correc-
tors in the machine and A is the Response Matrix.

It is easy to see how Nnet’s lend themselves for orbit
correction. The environmental input of the Nnet are the
measured orbit positions, 2 = {Xi, i = 1, N,,,) and
the output of the Nnet is the 6 = (Oj, j = 1, N,,,}
corrector kicks. For each monitor or corrector there is one
input or output node, respectively. The hidden layer will
make the Nnet nonlinear, and thus enable us to treat the
nonlinearities, due to the presence of nonlinear elements
in the machine, in the orbit response. It is also possible
to include nonlinearities arising from nonlinear horizontal-
vertical coupling in the measurement of the orbit simply
by treating the horizontal and vertical case simultaneously,
in which case the number of input and output nodes are
equal to the number of horizontal and vertical elements in
the monitor - corrector system.

Training s_ets can be generated either by calculating x’
for a given 0 using the calculated or measured Response
Matrix as in Eq. (lj, or by actually measuring the x’ orbit
response to a 6 kick. One have to be careful in chasing
the training sets to (i) include random linear combinations
of eigen kick vectors [4], (ii) have a good ba1anc.e between
positive and negative decomposition coefficients to prevent
an Nnet which is biased in one direct,ion, (iii) choose small
enough kicks to avoid going t,oo deep into the non-linear
regime of the activation function and to avoid beam loss
but large enough to produce noticeable orbit change.

Since the Nnet, output have to be symmetric around
zero, hyperbolic tangent as the activation function is a
good choice. The linear regime of this function is limited
to ITanh LI < 0 1.

The Nnet is then trained to a desired accuracy, and is
ready to perform on-line orbit correction. However, the
(re)training continues, since every time when the Nnet is
performing an orbit correction, the error is feed back. This
retraining algorithm provides fine tuning of the synoptic
weights as well as the ability to adopt to any change in the
orbit, response.

6 FINDINGS

The authors in [5] compared five different Nnet archi-
tectures (2 and 3 layer fully and shortcut connected Nnets
with different numbers of hidden nodes and a cascade
network) and four different training methods (Enhanced
backprop, Quickprop, Backpercolation and Cascade with
Quickprop). For this test 200 training patterns were used
for the NSLS’s VUV storage ring, which has 24 orbit moni-
tors and 16 correctors. The .? inputs were calculated from
Eq. (1) for the 200 random 6 outputs. They arrived at
the following conclusions: (i) a ‘fully connected’ three layer
network is not trainable with any of the teaching methods,
(ii) all but the Cascade network is trainable to similar ac-
curacy and with similar number of iteration cycles when
they are taught with one of the methods and all teach-
ing methods are training the non-cascade type networks
to similar accuracy and with similar number of iteration
cycles, and (iii) the CC network with the corresponding
teaching method can be trained to any desired accuracy
at the expense of increasing the number of hidden nodes,
sometimes to impractical values.

As a next step, 600 training patterns were used for he
NSLS’s X-ray storage ring, which has 48 orbit monisors
and 40 correctors. In this case, the x’ inputs were mea-
sured for the 600 random 0 outputs. Based on the pre-
vious results, a 3 layer shortcut connected network with
24 hidden nodes was used and Quickprop was chosen as
a training method. After 2200 iterations cycles the Nnet
was trained to 44~ orbit accuracy.

[II

PI

[31

[43

151

7 REFERENCES

D. Hammerstrom, “Neural networks at work”, IEEE Spec-
trum, June 1993, p.26.

P.K. Simpson, “Artificial Neural Systems”, Pergamon
Press, 1989.

A. Zell, G. Mamier, M. Vogt, N. Mache, K. Iliibner,
K.U. Herrmann, T. Soyez, M. Schmalzl, T. Sommer,
A. Hatzigeorgiu, S. Doring, D. Posselt, M. Reczko,
M. Riedmiller, M. Seemann, M. Ritt, J. DcCoster, “SNNS
IJscr Manual V3.2”, Irniv. of Stuttgart, Dept. IPVR. 1994.

Aharon Friedman and Eva Bozoki. “Use of Eigen Vectors
in Understanding and Correcting Storage Ring Orbits”,
NIM A344, p.269, 1994.

Eva Bozoki and .4haron Friedman, “Orbit Correction in
Accelerators/Storage rings using Neural Networks:, AIP
Conference Proceedings, V315, 1994.

1591

