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Abstract 

An overwiew of the architecture, workings and training of Neu- 
ral Networks is given. We stress the aspects which are impor- 
tant for the use of Neural Networks for orbit control in acceler- 
ators and storage rings, especially its ability to cope with the 
nonlinear behavior of the orbit response to ‘kicks’ and the slow 
drift in the orbit response during long-term operation. Results 
obtained for the two NSLS storage rings with several network 
architectures and various training methods for each architec- 
ture are given. 

1 INTRODUCTION - WHY NNETS? 

Neural Networks, Nnet’s for short, are radically differ- 
ent from standard software methods [l]. The outcome of 
NNet’s does not depend on the programmer’s prior knowl- 
edge of rules; Nnet’s can learn underlying relationships 
even if they are hard to find and can solve problems that 
lack existing solutions. Nnet’s can also generalize, they 
are able to correctly process imperfect or incomplete or 
noisy data. Knet’s are ideally suited to handle nonlinear 
problems, since there are more parameters to adjust then 
the total number of variables. Since the Nnet’s can con- 
tinuously learn from it’s own mistakes, it can be also used 
when the system’s behavior is drifting in time. 

All these features makes Nnet’s highly suitable for orbit 
correction in accelerators and storage rings, where the ac- 
tual relationship between measured orbits (input set) and 
the required orbit correction (out,put set) is nonlinear due 
to the presence of sextupoles and other nonlinear elements, 
and whrrct the orbit response of the system is not constant 
in time. 

2 ARCHITECTURE 

Neural Networks consist of nodes and weighted and di- 
rected connections between them. The connections can 
be feedforward, feedback, recurrent or any combination of 
those. Network can also differ in the way they are trained 
to solve a problcrn; supervised learning and self teaching 
networks [2]. 

In a feedforward network, what we will concentrate on 
in this paper, the nodes are grouped in layers; there is one 
input-layer, one out,put-layer and any number of hidden- 
layers. 1 Each nodes in the input-layer receive one (en- 

l IVork performed under the auspices of the U.S. Dept. of Energy 
under contract no. DI:-ACOZ-7SCHOOO16. 

’ Hidden 1 aycrs and/or ~‘~~urrent connections enable the Nrtets 
to handle nonlinrar prohlrrns -~- A two layer feedforward network 

vironmental) input signal, any other nodes can have ar- 
bitrary number of inputs (which are the output of other 
nodes). All nodes have one output signal, and any node 
can have a threshold. The processing of the input sig- 
nals to generate the output signal is taking place in the 
nodes. Fig.1 shows a typical node, where oi is the output 
signal of the i-th node with UQ synoptic weight between 
the i-th and the j-th nodes, qj is the threshold and the 
processing is represented by the fj function. Fig. 2 shows 
three different, feedforward networks: (a) fully connected, 
when each node of one layer is connected to each node in 
the next layer, (b) shortcut connected, when all nodes are 
connected to each other and (c) cascade network, which 
will be discussed in Section 4.1. 
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Fig. 2: Yetwork connections: (a) Fully connected, (h) Shore-ut 
connected and (c) Cascade network. 

When a set, of input signals, r’, is presented t,o t.ht Nnet, 
then the output of each nodes propagates to every other 

would not be able to handle nonlinear prohlmls 
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node it is connected to and this output is modified by 
the synoptic weight characterizing the connection between 
those nodes. At the end of this propagation process a set 
of output signals, 5, is emerging from the Nnet. 

3 PROCESSING 

In general terms, the following processing may take place 
in a node (see Fig. 3). All the oi, i = k, m inputs to the 
j-th node are processed by a lrunsfer func2ion to produce 
the net input, aj. In most cases the transfer function is the 
weighted sum (or product) of the individual inputs ’ : 

;j = ffr(Oi, Wij) = ~ *ijOi 
. 

i 

The net input is then processed by the activalion junction 
to produce the aj activation function of the node: 

aj = fjOCt(ij, r]j), 

where qj is a possibly non-zero threshold value (bias). 
There is an almost endless choice for activation value, 
the most widely used being the step function, ramp func- 
tion, sigmoid function and tanh function, as illustrated on 
Figs.4. 

The last step in the processing is provided by the output 
function, which in most cases is identity or possibly clip- 
function: 

amin - if aj 5 Qmtn 
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Fig. 3: Processing by a Node. 
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Fig. 4: Three frequently used activation functions 

2hput nodes receive one input from the environment. Thus for 
input nodrs the synoptic weight is 1 and the transfer function is 
idrntity 

4 LEARNING 

Once the architecture, including the connections is 
established, the synoptic weights have to be calcu- 
lated/adjusted to ensure that the Nnet will produce the 
right output-set for any given input-set. This is the learn- 
ing phase. The two basic categories of learning are the 
supervised and the self teaching methods. In the former, 
training sets (consisting of I’ inputs and the correspond- 
ing desired 0’ outputs) are presented to the Nnet and the 
learning conti_nues until the difference between the 0’ ac- 
tual and the 0 desired output of the Nnet is less then the 
desired accuracy of the system. In our application, we will 
compare such supervised learning methods. 

In the unsupervised method the learning is by compe- 
tition among neighbor nodes without any ‘teacher’. This 
category includes the Hebbian and the Competitive - Co- 
operative methods, like the Grossberg and ART methods, 
to mention only a few. Unsupervised learning is mainly 
used for classification and pattern recognition problems. 

4.1 Strategies for supervised learning 

Presenting an finput set to an untrained Nnet will pro- 
duce after the first forward pass an tj = f(o, - 0,) error 
in the j-th output node. In the error correclion learn- 
ing methods, the synoptic weights are adjusted at each 
iteration according to the < errors in the output nodes: 
GWij Rd OiCj. In the reinforcement learning methods a 
scalar tout error is calculated and the synoptic weights at 
e.ach iteration are adjusted as 6wij R c,,t. In the stochastic 
learning methods the 6wij’s are chosen randomly and the 
ones, which minimize the ‘energy’ of the Nnet, are chosen 
at each iteration. 

A few of the error correction methods, the ones we are 
using, are highlighted in the followings. 3 

Vanilla Backpropaga2ion 
This method is searching for the minimum in the error 
surface by a generalized delta-rule. The synoptic weights 
are adjusted at each iterative step as 

Awij = 7]Oibj = l7Oi f,! Ej ; 

where Sj = f~(;j) (Oj - Oj ) if j is output node 
xk bkwjk if j is hidden node 

Enhanced Backpropagation 
In this method a momentum term, CY, and a flat spot elim- 
ination term, c, are used when searching for the minimum 
in the error surface: 

Awl:’ = voi6j + QAwE+, 

Where 6j = [fi(ij)+C] 
(0, - oj) if j is output node 
Ck 6kwjk if j is hidden node 

Quickprop 
This method usrs infortrlat,ion on the curvature of t.he error 

3Details on these mrthorls ran IIC f~~al~,i in [z] 
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surface from the 2nd order derivatives and takes a direct 
st)ep to the error minimum: 

&f+’ = 
sft+1) 

‘I SC’) - S(w-1) 
6~~~~ where S = s 

‘WV 

Backpercolation 
In this algorithm the wij synoptic weights are changed 
according to the cj node error and not according to the 
error in the output layer. 

Cascade 
It can find the optimal number of hidden nodes needed 
for a task. It starts with a network containing input and 
output layer only, then minimizing the overall error of the 
Nnet, it adds hidden nodes one by one from a pool of can- 
didate nodes (see Fig. 2~). The actual training algorithm 
can be any of the previously discussed. 

5 ORBIT CORRECTION WITH NNET 

In a circular accelerator or storage ring, the relationship 
between the Oj kick introduced at the j-th corrector and 
the Xi orbit change observed at the i-th orbit monitor is 
given by the following equations [4] 

Xi = d4ijOj ,i= l,Arm , j= l,N, (1) 

where N, and N, are the number of monitors and correc- 
tors in the machine and A is the Response Matrix. 

It is easy to see how Nnet’s lend themselves for orbit 
correction. The environmental input of the Nnet are the 
measured orbit positions, 2 = {Xi, i = 1, N,,,) and 
the output of the Nnet is the 6 = (Oj, j = 1, N,,,} 
corrector kicks. For each monitor or corrector there is one 
input or output node, respectively. The hidden layer will 
make the Nnet nonlinear, and thus enable us to treat the 
nonlinearities, due to the presence of nonlinear elements 
in the machine, in the orbit response. It is also possible 
to include nonlinearities arising from nonlinear horizontal- 
vertical coupling in the measurement of the orbit simply 
by treating the horizontal and vertical case simultaneously, 
in which case the number of input and output nodes are 
equal to the number of horizontal and vertical elements in 
the monitor - corrector system. 

Training s_ets can be generated either by calculating x’ 
for a given 0 using the calculated or measured Response 
Matrix as in Eq. (lj, or by actually measuring the x’ orbit 
response to a 6 kick. One have to be careful in chasing 
the training sets to (i) include random linear combinations 
of eigen kick vectors [4], (ii) have a good ba1anc.e between 
positive and negative decomposition coefficients to prevent 
an Nnet which is biased in one direct,ion, (iii) choose small 
enough kicks to avoid going t,oo deep into the non-linear 
regime of the activation function and to avoid beam loss 
but large enough to produce noticeable orbit change. 

Since the Nnet, output have to be symmetric around 
zero, hyperbolic tangent as the activation function is a 
good choice. The linear regime of this function is limited 
to ITanh LI < 0 1. 

The Nnet is then trained to a desired accuracy, and is 
ready to perform on-line orbit correction. However, the 
(re)training continues, since every time when the Nnet is 
performing an orbit correction, the error is feed back. This 
retraining algorithm provides fine tuning of the synoptic 
weights as well as the ability to adopt to any change in the 
orbit, response. 

6 FINDINGS 

The authors in [5] compared five different Nnet archi- 
tectures (2 and 3 layer fully and shortcut connected Nnets 
with different numbers of hidden nodes and a cascade 
network) and four different training methods (Enhanced 
backprop, Quickprop, Backpercolation and Cascade with 
Quickprop). For this test 200 training patterns were used 
for the NSLS’s VUV storage ring, which has 24 orbit moni- 
tors and 16 correctors. The .? inputs were calculated from 
Eq. (1) for the 200 random 6 outputs. They arrived at 
the following conclusions: (i) a ‘fully connected’ three layer 
network is not trainable with any of the teaching methods, 
(ii) all but the Cascade network is trainable to similar ac- 
curacy and with similar number of iteration cycles when 
they are taught with one of the methods and all teach- 
ing methods are training the non-cascade type networks 
to similar accuracy and with similar number of iteration 
cycles, and (iii) the CC network with the corresponding 
teaching method can be trained to any desired accuracy 
at the expense of increasing the number of hidden nodes, 
sometimes to impractical values. 

As a next step, 600 training patterns were used for he 
NSLS’s X-ray storage ring, which has 48 orbit monisors 
and 40 correctors. In this case, the x’ inputs were mea- 
sured for the 600 random 0 outputs. Based on the pre- 
vious results, a 3 layer shortcut connected network with 
24 hidden nodes was used and Quickprop was chosen as 
a training method. After 2200 iterations cycles the Nnet 
was trained to 44~ orbit accuracy. 
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