
Some Aspects of TSD and TRL Calibration for a network-analyzer 

Olaf Naumann, Thomas Scholz 
Technical University, EN-2, Einsteinufer 17, D-10587 Berlin 

Abstract 

For the TSD-/TRL-calibration of a network analyzer stan- 
dard methods like Through-Reflect-Line and Through- 
Short-Delay are regarded with respect to the problems that 
arise when applying them. Methods to deal with these 
problems are presented and evaluated according to their 
applicability. 

1 INTRODUCTION 

For the removal of systematical errors in the measurement 
on high frequency devices numerous methods have been 
presented in the last years. Since normally measurements 
on such devices are carried out with an automatic NWA 
(Net Work Analyzer) different theoretical approaches were 
made especially for such measurements ([2], [3], [4]). In 
general a simple error model is regarded as shown in Fig- 
ure 1, where the systematical errors are represented by 
two erroneous two-ports (error-two-ports) without caring 
about any crosstalk. To disregard crosstalk is justified, be- 
cause it can be removed later on with a simple subtraction. 

I A I I DUT I I B I 
1 1 

Figure 1. Error model 

Since the behaviour of the twoports is uniquely determined 
by either their S-parameters (scattering parameters) or 
their T-parameters (wave transmission parameters, in this 
case non-vanishing transmission has to be assumed) the 
parameters of the DUT (Device Under Test) can be easily 
derived by the following matrix equations: 

TDUT,M = TA TDUT TB -3 TDUT = Til TDUT,M T$ 

(1) 
Since measurements are carried out for a (countable) set of 
frequencies, these equations have to be read for one single, 
fixed frequency. The same applies for all of the following 
considerations. 

2 CALIBRATION TECHNIQUES 

In equation (1) the parameters of the error twoports are 
the unknowns of a set of linear equations. To obtain infor- 
mation about the other parameters in these equations is 

per se not possible since every measurement will be af- 
fected by the above mentioned errors. Therefore stan- 
dards have to be introduced with known parameters. It 
is done on the base of their physical composition. With 
sufficient measurements on these standards enough data 
should be obtained to solve the linear equations evolving 
from (1). In praxi only a limited number of standards 
can be used with a sufficient accuracy of the postulated 
parameters, these include the ideal Through (direct con- 
nection), Delay or Line (line connection), Short or Reflect 
(a load with postulated value). The lack of a broader va- 
riety is not that uncomfortable since the minimization of 
the number of standards used is a goal demanded by sta- 
tistical errors and inaccuracies emerging for example from 
the assembling and disassembling of the measurement con- 
figuration. Two particular sets of standards or calibration 
techniques are regarded here, TSD (Through-Short-Delay) 
and TRL (Through-Reflect Line). The corresponding cal- 
culation methods of the error twoports have already been 
regarded ([2], [5]), yet the particular problems arising when 
applying them is rarely payed attention to. To unroll these 
problems let us first discuss the different methods. 

3 CALCULATION METHODS 

Since T- and S-parameters are uniquely related (save for 
the above mentioned restrictions), we will mix from now 
on the two terms as is convenient. The corresponding ma- 
trices will be denoted by the appropriate capital letter, 
of the two different lines by the indices Dl and 02 (a 
Through is really a line with length zero) and of the load 
by the index S. Furthermore the adherent measured ma- 
trices will be indicated by the additional index M. Note 
that the length of the lines should be smaller than X/4 at 
this frequency for a unique relation between phase shifts 
and lengths. The postulated T-matrices resp. S-matrices 
can be written as follows: 
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We get with equation (1) 

TATDITB = TMDI 

TATDZTB = TMDZ 

r 0 = ( > or . 

3 T&blT~T~lT~ = E 

+ ~&~2T~T~zT~ = E 

= T&L2T~T~2 

= (TMDIT&~)TA . (2 

1327 



Analogously we find 

(T&TDl)G3 = TB(T&&ghfDl> (3) 

We define H := (TMD~TG&) , K := (T~&TMD~). Then 
we write (H)ik and (K);k as Hik and K;k and (!&)ik and 
(!&)ik as nik and bik, Additionaly we abbreviate 19 := 
62 - 61. The elements of the matrices H and K can be 
calculated from measured data and are therefore known 
(and constant) parameters from now on, the lengths of 
the lines are not necessarily known but constant numbers 
as well. So we finally obtain: 

( 
alle ff a12e -’ 
we ff 

a22e 
-8 = 

> 

= 
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allHl1 + azlfflz aldIll + a&I12 
allffzl + wffzz ~lzHzl+ azzffzz > 

(4 

The equation for the bib is similar and is not explicitly 
written. Since the T parameters of either error twoport 
are nonzero, the linear equations for the coefficients aik 
and bik are linear dependent and one has to find other 
means to determine the coefficients. Let us first regard 
error twoport il. By dividing the equations in the first 
and the second column of (4) we obtain 

2 
Hx+(Hzz-Hu) -H12 = o (5) 

k+(H~rH~d 0 46) 

Note that both of these quadratic equations have the same 
coefficients. Because they are known from the measure- 
ments we find solutions for the values all/~ and a12/u22 
which are characteristiques of error twoport A. Now the 
problem arises which of the two possible solutions to assign 
to all/azl and which to alz/u22. Since (once again) the 
T-matrix of A has to be nonsingular they have to be dif- 
ferent, but there are no means to determine the right root 
choice solely by the physical properties of A itself. Three 
methods to do this shall now be presented. After apply- 
ing a proper root criterion, all the S parameters of the 
error twoports can be easily calculated with the additional 
information of the measurement values of the load (and, 
in the case of the TRL-method the information about the 
the lengths of the lines). Finally, when trying to deimbed 
the measured device with equation (1) there occurs the 
problem of phase stability. We will refer to this in the last 
section. 

4 ROOT CHOICE 

We shall now introduce three methods to choose the root 
correctly and evaluate and compare them afterwards: 

1. One possibility is to consider the incident waves on the 
errorports to be roughly proportional to the emerging 
ones. This allows an assessment of the two solutions 

by their magnitude. 

b~=alz(~az+b~) I blAaz 3 1% 

al=anz(zaxcBz) , alAb j 1% 

therefore 

>> 1 

< 1 

(7) 

2. If the roots have been assigned correctly (i.e. physi- 
caly true) the calibration of the used standards should 
give some additional information about the valid- 
ity of the used calibration procedure. So for in- 
stance (S~l)lz from the Through measurement should 
yield a number with positive real part, (remember 
A < l/4). Therefore one arbitrarily assignes the roots 
of the quadratic equations (5) and (6) to all/a21 resp. 
a12/a22, continues the algorithm with these values and 
checks whether the just mentioned physical condition 
is fulfilled. If not, the root choice must have been 
wrong and by repeating the whole procedure with 
swapped values of all/all and alJa22 the correct val- 
ues should be obtained. 

3. By dividing the lower left equation by the upper left 
equation in (4) it can be found after minor remodeling 
and inserting the solution for the quadratic equation 
(5) one finds 

e20 _ H11 + Hz2 f &HI, - H~z)~ + 4HlzHzl - 
H11 + Hz2 F &HI, - H&2 + 4H12Hs1 

(8) 

Examining the real and imaginary part of 9 yields 
(e” 1 < 1 since the absolute value of eilm” is always 
one and the real part describes dampening because of 
losses in the lines. Therefore one can test the validity 
of the assigned root choices by inserting them into (8). 
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Figure 2: Minimum and maximum value of the solutions 
of (7) in 4.1) 

For a wide scope of measurements we used high quality 
standards and had the opportunity to test the different 
criteria. For one exemplary calibration procedure figures 
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4.2) Figure 5: Imaginary and real part of Szl of a capacity 
loaded Through, deimbedded, without phase correction 
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Figure 4: Absolute value of e ‘Up in 4.3) 
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2, 3 and 4 allow to compare them. The third criterion 
is surely the most definitive when regarding the mathe- 
matical argumentation, no additional assumptions have to 
be made. We did in fact use it successfully. Yet the dif- 
ferences from one are at times quite small and noise or 
other errors could mask them. Therefore we combined it 
with the first criterion which, with reasonable additional 
assumptions, gives clearer indication. These two criteria 
have the advantage of giving a unique statement about the 
correct root choice. 

igure 6: Imaginary and real part of $1 of a capacity 
loaded Through, deimbedded, with phase correction 

The second criterion now is one of the most frequently 
used, with nowadays equipment it is no problem to redo 
the whole calculation even in the case of many frequency 
points. Yet it is only a mandatory and not a sufficient 
criterion and should therefore be regarded with suspicion. 
Hence it is suggested to mainly use it in combination with 
one of the other criteria. 

5 PHASE STABILITY 

this method is shown in figure 6. Anyhow a more definite 
treatment would be pleasant since this method very much 
depends on the initial values and is not very reliable for 
small values. 
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