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The interparticle repulsion, or space charge, limits the den- 
sity of charged particle beams that can be obtained in stor- 
age rings. In this report we study the effect of increasing 
the space charge, with an exact computation of the lat- 
tice parameters using SYNCH. Systematically increasing 
the ion density by decreasing the emittance with cooling 
techniques lowers the betatron tune, until the lower half- 
integral stopband resonance - also induced by the beam 
- is reached. In the simple model described in the re- 
port, the amount of “cooling” is limited by the encoun- 
tered stopband of the lattice. Therefore, machines with 
a higher tune and larger periodicity are better suited to 
store beams with high space charge. 

1 INTRODUCTION 

In conventional storage rings the interparticle repulsion 
limits thr density of the ions in the beam. Moreover, cool- 
ing techniques that, have been proposed to increase the ion 
beam density, for instance to generate crystalline struc- 
tures, simultaneously introduce the interparticle -or mean 
field - potential as a significant effect in the equations of 
motion [l]. 

For small, or moderate strength the effect of the space 
charge can be found perturbatively, but one objective is 
to cool the beam extensively, to be able to observe the 
different crystalline structures of such a beam, which have 
been speculated to appear at very large tune depressions. 

For extremely high density, non-perturbative studies of 
the effect of increasing space charge potential need to be 
conducted. We report below on such a study, which in- 
cludes a consistent modelling of the space charge to deter- 
mine the change in storage ring parameters using a code 
like SYNCH [2]. 

2 MODELING THE SPACE CHARGE 

The equations of motion in the storage ring have the form 
[3] t : 

y” + K,(s)y = K,,(s)y, (1) 

‘Work performed under the auspices of the United States Depart- 
ment of Euergy. 

1111 the following we will focus 011 the equations of motion in the 
vertical - or y - direction, but the equations of motion in the x- 
direction - and their method of solution - are identical. Moreover, 
the path length s is taken as the independent variable. 
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Figure 1: the function o(o). 
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with an analogous equation for 2. Kh,” are the lattice fo- 
cussing functions, which are periodic functions along the 
lattice of the storage ring. K,, is the effect of the space 
charge, and in genera1 also a function of s. For a dilute 
beam, i.e. K,, = 0, the solution to Eq. (1) is well known, 
and can be found for instance using SYNCH, and de- 
scribed in terms of the amplitude lattice functions & 
and betatron tunes r+. K,, is of the form: 

(2) 

where K is a constant. Eq. (2) is derived in the i\ppendix 
for the case of a uniform beam with elliptical cross sec- 
tion. We find for a “round” beam with the same betatron 
emittance 6 in the radial and vertical direction: 

K = ‘h NrofoQ’ 
M2y3a(r7)f 

To = 1.535 x 10-l” m is the classical proton radius, and 
A the mass number of the particle. o(q) is a function of 
the aspect ratio q = dm, and is plotted in Fig. 1. 
To solve Eq. (1) for non-dilute beams, we need to know 
the cross section at each point of the beam, which in its 
turn depends on the space charge. Thus, we start with an 
initial guess for the cross section (e.g. for a dilute beam), 
and iterate until we find a self-consistent solution. 

To take the space charge into account, we model the 
interaction within a magnet element of the storage ring as 
a sequence of kicks at fixed positions Sk along the beam’s 
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trajectory. In the proximity of the kick the equation of the empty FODO cell has been redistributed symmetri- 
motion reduces to: cally in eight different locations. 

y” = +s - Sk); (4) 

I\‘0 = Ii. x Lk. (5) 

I,k is the interaction length replaced by the &kick. The 
transfer nlalrix is easily obtained as: 

Finally, the last lattice, FOD04R (which we judge to 
be more realistic from the operation point of view) has 
each long straight section of FOD04 replaced by a four 
meter long drift, with doublets of quadrupoles at each end. 
For this lattice all quadrupoles in the fundamental cell are 
tuned independently, whereas only two gradients (one for 
the focusing, and one for the defocusing quadrupole) were 
used in the previous FODO rings. A(sk) = ( I& ; ) (6) 

Uetween kicks the equations of motion are those of the 
dilut,e beam. Consequently, the transfer matrix for one 
revolution is of the form: 

.2f*<,t.,l = Mkh(Sk)Mk+lA(*yk+i). (7) 

3 SOLVING THE EQUATIONS OF 
MOTION 

SYNCH determines the transfer matrix in between kicks, 
and we tell SYNCH explicitely to multiply it with a trans- 
fer matrix of the form Eq. (6), so that we obtain the total 
transfer matrix Eq. (7). 

As mentioned before, on account of the & dependence of 
the kick-amplitude, which in its turn follows only after the 
rornplete solution for one revolution is known, we use an it- 
erative scheme to obtain a self-consistent solution. Specif- 
ically, we have written the program GETBETAS which ex- 
tracts the &values at each postion where a kick takes place 
from the SYNCH output file. It then calls SYNCH, 
using a new input, file containing revised values for the 
kick-;tlllplit,ll(lr I<,,/& for each transfer matrix A(sk) (see 
Eq. (G)). If we symbollically denote one such operation by 
7’, and the spt of B’s generat,ed by SYNCH by the vector 
x, WC iterate ‘I’ nntil: 

7’Xj - xj 5 tolerance, 

where the tolerance is of the order of 10M5 m. 

(8) 

4 TEST LATTICES 

We have studied the effect of t,he space charge in this fash- 
ion for five different storage ring lattices. All lattices, with 
the exwption of CRYSTAL8, consist of regular FODO 
cells. Onr starting point is FOD016, made up of exactly 
16 cells, with bending magnets between the quadrupoles. 
This is the lattice with the highest periodicity. By ad- 
justing the qnadrupole gradient, we could also vary the 
phase advance per cell, and therefore the global betatron 
t,rmc. The next lattice, FOD04, was obtained by inserting 
a straight section made up of two FODO cells, with the 
bpnding magnet removed, at four axially symmetric loca- 
tions along the ring. The yeriodicity is reduced to four, 
and the circumference has increased correspondingly. 

To study the effect of periodicity we then studied 
FODOX, which has pcriodicity eight. It has the same num- 
ber of cells, and the same circumference as FOD04, but 

A feature common to all FODO lattices is that the be- 
tatron tunes in the horizontal and vertical plane are equal. 
This is not the case for the last lattice, CRYSTAL8, which 
has focusing doublets at either side of the bending mag- 
net. The periodicity is eight, but the focusing is weaker, 
compared to the FODO-family described above. 

In Table 1 we show the different lattices, the initial value 
(i.e. for K,, = 0) for the (global) horizontal tune uh, and 
the final value for vh at the maximum value for K for which 
a stable beam was obtained, together with the location 
Y,lop of the stopbands (see our discussion below). 

5 DISCUSSION 

The space charge defocuses the beam, and the tunes will 
decrease as I< increases until the stopband is encountered. 
If P is the superperiod of the lattice, the stopbands are 
located at: 

P 
v8top = m - 2 

??I = 0, 1, 2, (9) 

The halfwidth of the stopband to first order is equal to 
the space charge induced tune shift [3]. Therefore, the 
stopband located just below the initial value of the tune 
vh (vu), limits the maximally obtainable value of the space 
charge parameter K. Specifically, let V,top be the stopband 
just below the initial tune V; (vi). The final value of the 
tune at Kma2 is equal to: 

f 
Vh(“) = 

Vi(“) + fi,top 

2 (10) 

The tune shift due to the space charge to first order is 
given by [3]: 

A,=-& 
f 

P(s)L ds. (11) 
C 

We can use Eq. (11) to obtain a rough estimate of the max- 
imum of the space charge parameter I(, given by Eq. (2). 
K has a weak dependence on s due to the function (Y, and 
we set cy = 1 everywhere, so that: 

Al+ 
f 

ds = K;, (12j 
c 

where R is the radius of the storage ring. Recalling the 
remarks made above we obtain the required estimate for 
the maximum of the space charge parameter: 

I<““” M & - hp 

R (13) 
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The estimate using Eq. (13) are also shown in Table 1. In the calculation of the field, we neglect the presence of 
We conclude that the linear estimates of tune shift and vacuum chamber or other boundary conditions, as well 
stopband width are good even for large values of the space as the curvature. The scalar potential V and the vector 
charge perturbation. Furthermore, denser beams can be potential A = (O,O, -4) from which the field is derived, are 
stored in lattices with higher periodicity and focusing. related in view of Eq. (15): 

name initial final est. 
tune tune max. max 

FODOl6 
vh vh K K 

4.8 2.76 0.87 0.74 
4.0 2.29 0.69 0.62 

Table I: Overview of the initial and final tunes, as well 
as the maximum obtainable space charge parameter K, as 
well as its estimate using Eq. (13) for the lattices dis- 
cussed in this report. (Note that for t,he C:RYSTAL8 ring 
Vhfb ). 
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A DERIVATION OF THE SPACE 
CHARGE PERTURBATION 

WC consider a beam of I%’ particles of charge Qe with uni- 
form longitudinal charge distribution. The charge density 
is given by: 

P = NQefos(z, Y/)> (14) 

which does not depend on the longitudinal coordinate s. 
fa is the inverse of the ring circumference. The func- 
tion g(l, y) describes the transverse distribution of charge 
dcnsit,y. We ncglcct variations with the longitudinal mo- 
tion, and assu~n~ that the transverse motion averages out, 
so that y(r,y) is time independent. The beam velocity 
v = (0.0, u) is constant. The current densit,y in that case 
1s: 

j = (0, 0, lb). (15) 

A = pv. (16) 

as can be ascertained by examining the equations for V 
and A [4]. V(c,y) needs to satisfy Poisson’s equation, 
viz.: 

v2v= -47rp (17) 
We use elliptical (r, $) coordinates, appropriate for beams 
with elliptical cross section, viz.: 

z = r cos($J), (18) 
y = rjrsin(g). (19) 

g is aspect ratio of particular ellipse which corresponds 
to the cross section of the beam. We choose a potential 
V independent of G, and Laplace’s equation in the new 
coordinates becomes: 

flW,$ + f2(!4f g = - “P(T $1. (20) 

with the functions fi given by: 

fl(ti) = -$f$ cos2(1L) + sin2($1)1, (2lj 

fi(?l) = -$-[cos~($) + v2 sin2($j1. (22) 

A consistent solution is then: 

v = $3+ (23) 

where C is a normalization constant. The charge distri- 
bution p which is consistent with Eq. (23) is the uniform 
distribution 

NQefo P = ------I 7r7p2 
for r < (I, 

p = 0 for r > a. (24) 

Inserting Eq. (23) and Eq. (24) in Eq. (20) yields the nor- 
malization constant C. We then obtain the force: 

(-g,-s, = -zq(-$$). (25) 

where 

“(‘I)=; ,+; 
( 1 

(26) 

Finally, taking into acconnt the relation bet-wern beam size 
and emittance: 

a2 = q/T,; 6” =: t”/‘& 
7r (27) 

we obtain equations of motion of the form Eq. (1). The 
space charge parameter K, with fh = E,, = c is given by 

Eq. (3). 
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