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Abstract 

From the combined Liouville-Fokker-Planck equation, ex- 
tended beam moment equations are derived. Compared to 
previous approaches that are based on Liouville’s theorem, 
these moment equations contain additional terms that de- 
scribe both a temperature balancing within the beam as 
well as a damping of envelope mismatch oscillations. From 
the moment equations, fairly simple expressions are ob- 
tained that allow us to estimate the emittance growth rates 
due to intra-beam scattering effects. 

1 INTRODUCTION 

Beam dynamics calculations that are based on the assump 
tion that Liouville’s theorem applies, treat the beam’s 
charge density distribution as a smooth function of the 
spatial coordinates. Since any charge distribution is in fact 
“granular”, related effects - such as intra-beam scattering 
- cannot be tackled on this basis. Instead, we must find 
an appropriate model that describes a phase space dilu- 
tion process. If particle-particle collisions can be assumed 
weak, we are allowed to use the Fokker-Planck equation to 
describe the increase of the phase space volume the beam 
occupies. 

We do not attempt to integrate the Liouville-Fokker- 
Planck equation directly. Rather than, we apply the 
method presented first by Lapostolle[l] and Sachererp] to 
describe the beam in terms of root-mean-square (RMS) 
moments and their derivatives. 

2 FOKKER-PLANCK APPROACH 

2.1 General Setup 

If we want to include effects in our beam dynamics analysis 
that do not conserve the beam’s total phase space volume 
(“non-Liouvillean effects”), we can write formally 

df af 
-z= at., [ 1 (1) 

Herein, f = f(S, p’; t) denotes the normalized ti-dimen- 
sional p-phase space distribution function that represents 
a charged particle beam. Explicitly, the 1.h.s. of (1) can 
be expressed in terms of the Vlasov equation 

(2) 
NL 

The r.h.s. of (1) formally stands for the non-Liouvillean 
effects to be included in our analysis. If these effects con- 

stitute a “Markov” process, we can describe it with the 
help of the Fokker-Planck equation: 
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The remaining task is to determine its coefficients in an 
appropriate way, namely the “diffusion tensor” elements 
Dij as well aa the “drift vector” components /Yj7f;i. 

2.2 Moment Equations 

In order to derive equations of motion for the RMS beam 
moments from Eq. (2), we must set up as usual the second 

order central moments of f and their respective deriva- 
tives. As an example, the time derivative of (z”) is given 
by 

Applying this procedure to Eq. (2), switching to labora- 
tory %ace space” coordinat,es, and using the longitudinal 
position s instead of the time t as the independent vari- 
able, we end up with the following coupled set of moment 
equations: 

$(x2) - 2(22’) = 0 (3) 

$(zxf) - (2’2) + k;(s)(x”) - -$g+ + $xxq = 0 

;(x’2) + 2p(&) - !!xk&g + 3$x”, - g$$ = 0 

The similar sets of equations can be written for the y- and 
z-directions. 

2.3 Envelope Equation 

Defining the RMS emittance F~(s) as 

$(s) = (x2)(x’“) - (xx’)” (4) 

and combining the first and the second equation of (3), 
we can set up a differential equation for m, which is 
proportional to the actual beam width in the z-direction: 

$m + $;m+k:(s)d@i 

Comparing Eq. (5) with Sacherer’s “RMS envelope equa- 
tion”[2], we observe that one additional term containing 
the first order derivative of m appears. 
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2.4 RMS Emittance Equation 3 GROWTH RATES 

If we define the ratio P,.~ of the y- to the z-“temperature” On the basis of Eqs. (3), the derivative of the rms- 
emittance (4) is readily calculated to give 

‘J&) II (x2) ds * (w - $+)) 
_ 2 &J(s) 

( 
Pzz) 

CD-Y (x2) --c3p373. > (6) 
The moments on the right-hand side of (6) that contain 
the electric self-fields of the beam will be neglected in the 
following. It has been shown that these terms are related 
to the change of the “excess field energy”. For intrinsically 
matched beams, this quantity is approximately a constant 
of motion. The remaining terms are related to the Fokker- 
Planck coefficients to be discussed now. 

2.5 Temperature Relations 

For a coasting beam circulating in a storage ring, the “local 
momentum compaction factor” is given by[3] 

4s) = D(S)lP(S) , 

with D(s) = Az/(Ap/p) denoting the dispersion function 
and p(s) the local radius of curvature of the central tra- 
jectory. Using the abbreviation 6 E Ap/p, we can define 
the equilibrium temperature T as 

CT 1 G(s) 
mC2P2y=3 ( 
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Eq. (10) can be written in an alternative form: 

$ln&J(s) = % (vru(s) + 7.zL(~) - 2) . (11) 

Depending on the actual sum of the temperature ratios, 
the gradient of s:(s) can be positive as well as negative. In 
contrast, the product $s,“(S’) can only increase during the 
balancing process. If we add (11) to the similar equations 
for In E; and ln(&‘) 

$lns:(s)s~(s)(15~) G $ln~f~~(s) = 

2kf (1 - TqJ2 
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(12) 

we observe that the right-hand side is always positive. It 
increases as long as the temperatures within the beam are 
not balanced - which indicates that Instot constitutes 
a measure for the the beam entropy[3]. 

Integrating Eq. (12), we find 

&(S) 
z&i- = exp{ SWWz, + Zz, + I,*)} (13) 

with q(s) = ym2 - o(s) as the “local slip factor”. Herein I,, , I,,! and ZVz denote the integrals of the three 

If the diffusion as well as the friction effects can be ap- temperature ratio functions. For exa.mple, the dimension- 

proximately treated as isotropic, then only one diffusion less quantity ZTr, is given by: 

coefhcient D in conjunction with a single friction coeffl 
cient ,8, appears in our equations: fsv = J- s 11 - b(41” (& > o . 

D = (&z) = (D,,) = (Dzz) J (14) 
> PI = +‘ii;z = ?/;y = Pj,z 

s 
0 f-VI(s) 

Under these circumstances, D turns out to be propor- “I 9% 
tional to the “dynamical friction coefficient” PI,, yielding ’ “T ~~~~~~~ b i 
the Einstein[4] relation: 

D = /I, ykT/m . 
“~;‘\I/‘;; ‘\py- -..-; .~,~,]-~-_~- -e-ImId 

C8) 4,$. ! \ i \-,’ 

As the result of the averaging procedures, ,Bf is given by[5]: * i ,,,/ 

Pf = Y~c(--$-)~. (g)“‘“. InA. (9) 

In these expressions, kT denotes the equilibrium beam 

::1; /.A----meAmpp -.,,,r 

c ,.\ 
- I 

temperature in energy units, m the particle rest mass, p ‘.,! 
i$O) 

its charge, and y the relativistic mass factor, n stands for 
; 
“, 3 _ / 

the average particle density and In ,4 for the Coulomb log- 
\ 

. z 

arithm. 
b \ 

I 
,,‘--“\ ___r . . - - ~. 

5 \ / 

Then Eq. (6) reduces to a simple form involving only 
second order beam moments[6]: 

1 2 Y r-1m.7-“-“. 1 r ,x ,/,, lc., ;‘; ‘“k’;c”-,’ ,r ._, ;A. :E _ ;;Tb-. 6-‘-2F 
i’i.lS 

-Ld&S) = -qL 2Eg(s) g(s) 
(x2) ds 

Figure 1: Envelopes and emittance growth functions of a 

(x2) 
($) - Ie9lI~“) 

> 
9 mismatched beam passing through a Continuous Focusing 

(10) Channel. (The scale on the right-hand side applies to the 
with the abbreviation ICJ = flf/c/Y~. Again, similar equa- dimensionless emittance growth functions.) 
tions apply for the y- and z-directions. 

1184 



From Eq. (13), the average e-folding time r,f for the emit- 
tance ratio ~t~t(t)/et~t(O) is calculated to give 

7-l = $Pj (Zzy + zz* + Iv*) f et (15) 

We see that a temperature balancing process - which is 
driven by the fluctuating component of the interaction po- 
tential - is always accompanied by an increase of the total 
beam emittance etot. If in a periodic system the tempera- 
ture imbalance is restored periodically due to the specific 
beam handling, the integrals Zza,, Z,,, and Z,, are positive, 
hence a repeated, not saturating growth of the emittance 
occurs. 

4 NUMERICAL EXAMPLES 

4.1 Continuous Focusing Channel 

To get an impression of the dynamics of a thermally un- 
balanced beam, we first integrate Eq. (5) together with 
Eq. (10) for the simplified case of a continuous focusing 
device (h, E k, = const.; b, E 0). The results are plotted 
in Fig. 1. In order to render the friction phenomena more 
obvious, we increased p, numerically by a factor of 104. 
Consequently, the damping of the mismatch oscillations is 
evaluated to take place much more rapidly and the growth 
rates to be much larger, compared to a real beam. 

The envelope oscillations are accompanied by a net in- 
crease of the transverse beam emittances. As already 
stated in the context of Eq. (14), the emittance growth 
vanishes together with the mismatch oscillations, i.e. when 
a circular symmetric beam evolves. 

4.2 GSI Heavy Ion Synchrotron (SK3) 

In principle, the same effects are observed if we simulate a 
real structure. The transformation of an ion beam through 
the SIS is plotted in Fig. 2. The essential beam and struc- 
ture parameters are listed in Tab. 1. Due to the tem- 
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Figure 2: Envelopes and emittance growth functions of a 
matched beam passing through the GSI Heavy Ion Syn- 
chrotron (SIS). (The scale on the right-hand side applies 
to the dimensionless emittance growth functions,) 

Table 1: List of Parameters for the SIS simulation 
ion snecies 23s1;73+ 

energy 
period length S 
horizontal tune Qh 
vertical tune Q,, 

VW = 7 -2 -r;2 
beam current Z 
number of particles 
initial RMS emittances E,,~(O) 
initial RMS momentum spread Ap/p 
ellipticity Zzu 
ellipticity ZzI 
ellipticity Zyz 
friction coefficient pj 
horiz. emittance e-folding time Tz+f 
vert. emittance e-folding time r,,,f 
long. emittance e-folding time ~=,~f 
total emittance e-foldinn time r*pr 

65 MeV/amu 
216.72 m 
4.29 
3.29 
0.834 
0.05748 A 
1.0 x 10’0 
1.25 x low6 m 
3 x 10-4 
0.205 
0.462 
0.211 
1.293 s-1 
-4.1 s 
13.4 9 
0.9 s 
7.9 9 

perature balancing process, a monotonous increase of the 
longitudinal momentum spread is calculated. At the same 
time, the z-emittance decreases whereas the y-emittance 
comes out to be approximately constant. 

In contrast to the “Continuous Focusing Channel”, the 
gradients of the emittance functions do not relax. Since the 
imbalance of the transverse beam temperatures is restored 
by each quadrupole, no equilibrium can ever be reached. 
We thus do not find a relaxation of the growth rate, but 
always a positive gradient for the total emittance. 

5 CONCLUSIONS 

The moment description of a charged particle beam has 
been demonstrated to be useful even if additional non- 
Liouvillean effects are to be included. We thus obtain ex- 
tended RMS moment equations that describe - at least in 
principle - any Markov process within the beam. Applied 
to the effect of intra-beam scattering, we find our results 
to be in good agreement with the growth rates obtained 
from other codes[7]. 
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