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Abstract 

The beam dynamics associated with a two rf system was 
investigated by numerical tracking of the phase space coor- 
dinates. An external sinusoidal phase modulation applied 
to the double rfsyatem give rise to resonance islands in the 
poincar’e surface and in some regions the motion is chaotic. 
The evolution of the Poincar’e surface as the modulation 
frequency is increased maps out the bifurcation branches 
of the stable and unstable tixed points of the resonance is- 
lands. To understand the behaviour of theese parametric 
resonances, the hamiltonian of the system was expressed 
as a function of action angle variables and thereafter trans- 
formed into a resonance rotating frame. 

1 THE EQUATION OF MOTION 

Consider a synchrotron with two rf cavities working at 
different harmonic numbers hr, hr and voltages VI, Vz with 
ratios h = hz/hl = 3 and r = V~/VI = l/3 . For the 
stationary state at which a synchronous particle does not 
gain or lose energy in either of the cavities, the equation 
of motion in the longitudinal phase space can be written 
as 

i=a, i= -(sin4-tsinw) (1) 

The dots represents derivatives with respect to the scaled 
time coordinate 6, = u,w& where we is the revolution fke- 
quency and V, is the synchrotron tune of small amplitude 
oscillations due to the primary rf cavity. 6 = bh is the 
normalixed off momentum coordinate with 9 2 thPe phase 
slip factor. 

(d,a) form a conjugate pair of phase variables with cor- 
responding Hamiltonian 

qs44 6) = fsa + V(4) (2) 

where the potential V(4) = 1-cos +- f(l-cos &%). Since 
the Hamiltonian is a constant of motion, 6 can be written 
as 6(q$ E) = f 2(E - V(d)) with E = H as the energy 
of the oscillating particle. For stable motion (0 < E 5 y) 
the action defined by 

J(E) = & f W, 4M (3) 

is & times the phase space area enclosed by the trace of 
the particle. To transform the system into action angle 
variable the generating function W(& J) = $,(#)d# is 

used. 4 is the turning phase angle at which 6 = 0. The 
angle variable $ reads 

(4 

with (eq. 3) 

(3’ = I/,” JZ(E: V(4’))@’ (5) 

Hamilton’s eqs. 4 = $$, j = $$ = 0 imply that 4 = 

$$8, + $0 and hence the synchronous tune Q, can be 
obtained as $$u,. 

To find E as a function of J eq. 3 is to be turned inside 
out. This has been done semi analytically by solving the 
equation of motion at small amplitude oscillations where 

V(4) = J$ and then by averaging out the $ dependence 
of the rest of the Hamiltonian: 

E(J) = Eo(Jo) + (V(d(llo) - Eo(Jo)))+, (6) 

where index 0 is denotes the exact solution at small am- 
plitudes. Putting J = JO the result is [l] 

E(J) = AJ 4i3 (1 - orJ ‘I3 + azJ4i3 - a3.J’) (7) 

where A = 3 (-&)4i3 with the elliptical function K = 
K(i) = 1.85407 and where the parameters a1 = 0.1762, 
a2 = 0.0424 and as = 0.039. 

The next task is to express 4 and d as functions of $ and 
J. Prom eq. 4 and eq. 5 it can be obtained that $($, J) 
is a cosine like function with period 2s: $(f + x, J) = 

41~4 4, 4(-h J) = cb(rl, J) ad do, J) = 4 Therefore, 
let 

4th J) = BCa.(J)cos4 
I 

(8) 

where ra are odd integral number. Further, if eq. 8 is 
derivated with respect on 8,, then a($, J) can be obtained 

= (es. 1) 
a($, J) = x sn(J) sin 4 (9) 

” 

where gn (J) = -JEna,,(J). The Fourier coefficients 
gn(J) for the momentum variable can be evaluated by us- 
ing eq. 4 and eq. 5, 
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Figure 1: The Fourier Coefficients gn 
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and these coefficients have been evaluated for various R 
and .7 (fig. 1). The two dominating coefficient are gr and 
gs, while higher order coefficients become important only 
near the separatrix between the stable and unstable region. 
The solid hues in fig. 1 show the approximation 

(tanh k)? 
h(J) = mnexP3k coshk (11) 

with 

(12) 
which is shown in fig. 2. This approximation was derived 
by assuming that a,, decreases expontially with R and has 
turned out to work well for R = 1 and R = 3. For higher 
order harmonics it is accurate for small values of J and 
close to the separatrix. 

2 PHASE MODULATION 

If the system is distored by a sinusoidal phase modu- 
lation with amplitude a and frequency v,we as 4 + 
$ + a sin v,wot, the equation of motion become 

$5 = 6 + 0% cos 3, 
“a ua 

i= -(sink- +inM) (13) 

The time evolution of the distored system can be simulated 
by trackiug eq. 13 turn by turn. Plotting the phase space 
coordinates every & turn, a Poincar’e surface is obtained 
with a number of resonances (Fig. 3). 

The Hamiltonian of the distored system reads 

ff(J, ~6 6) = E(J) + 6a? cos Eo, (14 

and using the Fourier expansion (eq. 9) we get 

WJ, $, 0,) = E(J) + a? c g,, sin R$ cos $e, 
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Figure 2: k(Z) 

= E(J) + !f$- C gn S~U(R+ - ze,) 
’ n=fl,f3,.. 

where g-n has been defined as -g,,. For a. g I the 
synchronous tune can be approximated with $ = g x 
g = a. When u,,, = nQ, we are on a resonance. Since 
0. = s2x7n in the Poincar’e surface, the angle variable 
on a resonance become 11 t $0 + $$8, = tie + 2~2 where 
m is an integral number. Hence the resonance consists of 
n islands. 

Transforming the coordinates into a resonance rotating 
frame by using the generating function 

&(x, I) = (+ - iFe.1 . 

the new Hamiltonian ZZ(Z, x) = a($, .z, e,) + 2 is given 
by 

zqz, x) = E(Z) - ;:z + zg, sin nx 07) I . 
with the new action angle variables (x, I) given by Z = .Z 
and x = d, - iF0,. Prom Hamilton’s equations 

aE Iv, i=----+ i $gk(Z) sin nx 
aJ nv, , (18) 

z = -+“(z) CO8 nx (19) I 
the condition for fixed points, ;ifp = 0 and ZZ, = 0 can be 
obtained as 

cosnxfp = 0, 7bz - 1 f n:gb(ZjP) = 0 (20) 

This imply that $0 = 3~; and that there will be a stable 
fixed points and n unstable fixed points for the resonance. 
prom eq. 9 it can be seen that two of the fixed points will 
be located on the b-axis. 

In the Poincare surface (fig. 3) there is one resonance 
consisting of four islands. That resonance is of second 
order and is a combination between n = 1 and n = 3. The 
Hamiltonian for the mixed resonance can be written as 

H = E(J) + Asin($ - ze,) + BGI(S+ - 28.1, (21) 
_ _ 
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Figure 3: Poincar’e surface at 2 = 1.5 and o = 5O. 
5 

2 :o C15 lb p 1.5 I 
Figure 4: The bifurcation tree at z = 5”. n indicates the 
number of resonate islands divided by the order. 

where A, B are functions of gr, gs respectively. Perform- 
ing canonical perturbation method, the Hamiltonian can 
be transformed to contain a resonance driving term with 
sin(4$ - 228,). Th us when the modulation tune is near 
2&n % 4Q,, the resonance due to the second order pertur- 
bation becomes important. In fig. 3 there is also a reso- 
nance with five islands which is of third order. 

The width of an island can be approximated with AI = 

4 cw,:c,, 
and near I = 1, where the detuning pa- 

rameter sis small, the island width becomes large. Es- 
pecially for the first integer resonance this effect is impor- 
tant: Fig. 5 shows the Poicar’e surface at 2 = 0.9 with 
a = 1’. To be seen is two separate resonance islands, both 
with R = 1. At the same modulation frequency but with 
a = 5’ (Fig. 6) one of the resonate island overlaps the sep 
aretrix between the stable and unstable region and hence 
this region becomes unstable. This overlapping starts at 
4 x 2.5O. 

The sea of stochasticity at small amplitudes in the 
Poincare surfaces comes from higher order overlapping res- 
onances. This can be understood by studying fig. 4 where 
multiples of 3 vs. E has been plotted together with 2 
at various resonances. By drawing a horisontal line at 
h = 1.5 which cuts through s - 5,3,$, g the same res- 
cknces M in fig. 3 is observe 8: - At small values in J and 
near the separatrix, the line cuts through many resonances 
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Figure 5: Poincar’e surface near the bifurcation of the n = 
resonance with a = lo and 2 = 0.9. 
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Figure 6: Poincar’e surface near the bifurcation of the n = 
1 resonance with a = 5O and z = 0.9. 

and, for smaller modulation tune this number goes to in- 
finity if o is large enough. Therefore, the motion will be 
chaotic at small amplitudes and near to the separatrix. 

From fig. 3 it can also be seen that the drawn line cuts 
through the same curve twice which imply that a resonance 
occur twice in a Poincar’e map, This can be seen in fig. 5 
where there are two resonances with n = 1. Increasing the 
modulation Gequency, the two resonances comes closer to 
each other until g reaches its maximum value 0.92 at 
.I M 1. At this point the resonance islands merge together 
and disappear, i.e. the resonance biiurcates. 

At large values in .I, 2 at resonance deviates from the 
curve ng (fig. 4). This is because the last term in the 
resonance condition (eq. 20) becomes significant near the 
separatrix where gn have large derivatives with respect to 
J (fig. 1). 
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