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Abstract 

The application of analytical method for spin calculation is 
described. The calculation of both orbital and spin motion 
is based on Lie operators technique. The spin tune shift 
due to spin resonances and rms energy shift is estimated 
using this technique. The comparison with the experi- 
mental data is presented. The computer code SPINLIE 
was used for simulation of the rms energy shifts for collid- 
ers with low (VEPP 2M), medium (VEPP-4M) and high 
(HERA-e) energies. 

1 SPIN TUNE SHIFTS 

As it was shown in [1],[2] the solution of the BMT equation 

(1) 

can be found using Lie operators tecnique. Here s’ and @ 
are spin and its precision frequency corespondingly and 0 
is the azimuth over the ring. The BMT frequency W can 
be divided into the E(O) + G. Here G’ is a small correction 
due to errors. 

The solution of this equation can be written as a map 
for spin vector from initial azimuth 00 to final 8: 

q(e) = S(Bo, qqe,). 

The map S is found as the expansion of the exponential 
Lie operators product: 

S(B0, 0) = e fi(~)jeo,e)~: e:bw)(eo,e)~ _ - 

= cJO)(&Q) e:~(‘bw)~, 

Here S(‘)(Bo,Q) is the usual rotation matrix. It describes 
the spin vector rotation due to @(“)(f?) part of BMT fre- 
quency. The expression for vector @(‘!(B,,, 8) is [2] I: 

wyoo, 0) = /-” dB’(,S(‘)(Bo,8’))-‘j(8’) + 

e 
+’ d8’ J J 

e’ 

2 e. 
do” (2) 

[ (S(“)(Bo, f)) -lcqQ”), (s(“‘(s,.s’))-‘~(&;] + . 

‘For brivety, we will consider part of ~2 only, which is independent 
from betatron amplitudes. The influence of the betatron and syn- 
chrotron resonances is eliminated drle to it. More complete results 
will be given in [3]. 

Let us take into account two terms of the expansion of 
,:,g’)i: only: 

,biJ(‘)j: e’ =: E : + : ),$(r,g+: +a : @(f)s’:2 

One can find the following expression for the map S in this 
case: 

Sij = S!,D)[Si;j + ekjmWL’) + ~e~imW/“e,,,,,jW~)] = 

= S,(i) [t&j + ekj,Wk) + t (Wf)Wy)- 1 @(‘) 1’ f&j)] 

Let us investigate one turn transformation 0 -+ 0 + 2a. 
The matrix S(‘)(B, 0 + 27~) determines the spin tune vo for 

particles on the equilibrium orbit (cos 27~0 = 
sp s(O) - 1 ( 2 ) ) 

such that [2]: 

spp, 6 + 28) = COS 23TVO6ij + sin2*voe;jkny) + 

+ (1 - cos 27rvo)n!o)n!o) 
1 I’ 

where r?(O) is a periodical eigen vector (on azimuth B) of 
the matrix S(‘)(B, 8 + 27). The spin tune v(B) for nonequi- 
librium particles is determined by the trace of one turn 
matrix S(0,Q + 2~) and after some transformations one 
can find: 

cos 2TV = cos 27rYo - ;(I + cos 27rvo) 1 VW) 12 - 

- sin27rvo(n’(“)@(‘)) - :(I - cos2x~~)(~(~)~(~~)~, 

Therefore the value AV = v - ~0 equals: 

27rLqq x (fP’(s)w(e)) + a 1 vi+‘(e) I2 ctg7rvo - 

- ; (R(“)(8)~‘(‘)(8))2tg?rr,o. 

The transversal perturbation (relatively vector n’(O)) is the 
main part of the value G,(r) [4] ‘. So, averaging over the 
ring we receive the final result: 

(3) 

Let US introduce the spectrum: 

(S(“)(oo, 0)) -lwL(@)e’yoe = & C u~kefke+iq(eo), (4) 
k 

‘WC’) is proportional to betatron amplitudes, but after averaging 
II 

over the ring it becomes the second order on betatron amplitudes. 
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then after short calculations one can receive: 

w!“(e) 

Therefore 

py = y-m (siy;y;))2 + 

Now one can finaly write the following formula after sub- 
stitution of this expression into (3): 

For numerical estimations of spin tune shift it is useful 
to connect harmonic spectrum (4) with polarization level 
P [5]: 

p 1-K < k3(ny - 7%) > 
5&( ,k,3 [1-$2~+~(y~)2]) = 

= 5> ( 1 k 13 ,~Y+c&)2, >. 

Here k = 3 is the orbit curvature, n’ and rg are peri- 
odical spin and spin-orbit coupling vectors for nonequilib- 
rium particle. Let us write equation for periodical solution 
ii [2]: 

G(e) = r?(O)(6) + [k%)(D),d0+?)], 

where 

G)(Q) = 2 [ (s(“)(8,e + 24)-i]*@cr,(e). 
n=O 

--z(r) 
Taking into acount that part of W paralel to n’(O) is not 

-Y(p) 
important, one can find part of WI : 

Then: 

($)’ = y2 1giq2 = = 

ZZ 4 
[C i$k I2 

sinc2*(wo - k) 
4sin2 17~0 k (vo - k)2 

+ 

sinc7r(wo - k) Si7m(Q - k’) 
+ x (4kG;r) (wo _ /.) 1 Lx 

k,k’#k 
(vo - k’) 

x 4 si~~swo c 1 Gk I2 sin;;;‘“;, ‘) = 

k 

= I$ F (Lo? [yl. 
It is necessary to note that the last formula valid only 
for isolated integer spin resonances. Now one can express 
the spin tune shift hv through polarization level P near 
integer spin resonances: 

hv 9 $2 - p (k - wo12 sin 2nwa 

-=ii--T- w 4 

Unfortunately we have experimental result for the evalu- 
ation of hv, which was obtained for the collider VEPP-4 
only [6]. It is ss follows: for E w 5 Gev (~0 M 11; it is an 
area near T-mesons family) and level polarization up then 

20 % the value of the - y C=Z 2. 10e6. It is good agreement 
with formula (6). 

2 RMS ENERGY SHIFTS 

As it is known [4] the energy shift AE appears due to 
taking into account finite beam rms sizes. This energy 
shift is connected with the quadratic nonlinearity of guide 
magnetic field (s = a@): 

AE 
-= 2 < ;. > [2+w) + (y)2(s4”)], E (7) 

where y is energy shift, which is averaged over the beam 
distribution, p and $ are a horizontal beta and dispersion 

2 
functions; c and y 

( > 
are a horizontal beam emittance 

and rms beam energy spread; < > is an averaging over 
the ring and overline denote averaging over the beam dis- 
tribution. 

Energy shift appears also if one takes into account the 
real i.e. distorsion orbit which is connected with magnet 
element misalignments (especialy quadrupoles) and using 
the kickers for its correction. Therefore, it is necessary to 
add [3] new terms into (7): 

1 
= 1 _ e-2rriv, ZT 

Lx wkeid(@) ~6+2m d@~e”(k-v~)B’, 

k 

where g = *e is a quadrupole strenght, D, is a 
vertical displacements of the quadrupoles and Ay is the 
vertical distorted orbit. 
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Spin tune is shifted with energy and all these terms 
(7,8) do not “destroy” the connection between spin tune 
and beam energy. The terms from (7) give the spin tune 
spreading which is averaged over the beam in contrast to 
the terms from (8), which describe the coherent energy 
and spin tune shifts. In the Table 1 the numerical results 
of simulation for av/u for the colliders with the different 
electron energies are presented. 

VEPP-2M 1 VEP: 

-.54. l(r6 0.27. 1O-7 0.15. W5 
<N,AY> I ,>.I.. 0.22 10-7 0.24. 1O-6 0.27. 1O-6 

> 7 -.14.10-4 0.14.10-s -.19~1o-s 

Table 1: au/u simulation for different colliders. 

Beside that the usage of vertical bumps for the harmonic 
compensation of the spin-orbit coupling can produce the 
local distorsion of the vertical orbit. g-closed orbit bumps 
are used for HERA-e, as an example. The orbit was dis- 
torted inside eight regular arcs with sextupoles on this 
basis (the total number of arcs is 192) and inside these 
arcs Ay x 1 cm. Under this conditions the spin tune from 
these bumps will be six times a.s much as the shift which 
is connected with the rest of the sextupoles (the rezults 
presented in the table 1 were received without taking into 
consideration these bumps). 
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