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Abstract 

A stochastic mapping algorithm for calculating the phase 
space density in electron storage rings in the presence 
of nonlinearities is investigated. In particular the two- 
dimensional beam-beam interaction is studied for several 
simple examples. The shape of the density function is 
modelled and lifetime calculations are performed. 

1 INTRODUCTION 

A given charge distribution in an e+/e--storage ring will 
settle down to a kind of steady state after a certain time 
because of two counteracting effects which the system is 
subject to. On the one hand the system is dissipative due 
to the so called radiation damping. On the other hand 
there is a stochastic excitation caused by the quantum 
noise in the emission of synchrotron light in the bending 
sections of the accelerator. The quantity that completely 
describes such a stochastic process is the phase space den- 
sity function p(Z,t) which holds the information about the 
probability of finding a particle in a considered spatial and 
temporal domain and consequently determines the size and 
lifetime of a stored particle beam. 

The usual method to compute density functions and 
their dynamics is to track a large number of particles and 
to follow their motion for a large number of turns. This 
makes numerical calculations for particle densities quite 
computing time consuming. In this paper we describe 
an alternative method to compute the density for e+/e-- 
storage rings which has already been introduced before [I], 
[2], [3]. The algorithm uses a map for the particle tracking 
and moreover is based on the generation of a stochastic 
mapping operator for the density function p(Z,l). The 
main ideas of this approach have been suggested by .4. 
Gerasimov [4]. Here we present applications of the al- 
gorithm like lifetime calculations and examples of simple 
storage ring models with beam-beam interaction. 

2 THE STOCHASTIC MAPPING 

Like in most mathematical descriptions of particle motion 
in e+/e--storage rings the stochastic excitation is mod- 
elled by assuming a white noise process for the external 
noise. White noise is totally uncorrelated at any two time 
steps The resulting particle motion is then a Markovian 
process which means that the state of the system at a cer- 
tain time is depends only on the immediate past. The 
density function of such a system is completely described 
by the density at the time step before and the transition 

probability between the two considered time steps. This 
transition probability or time propagator A for the den- 
sity function is calculated and the density p(i,2) at the 
discrete successive time steps t,, pn, is computed by re- 
peatedly applying the time propagator A: 

p(L) = &(LI) 

p,, = AP,-~ = = A”po. 

Thus the time evolution of the density function of a dissi- 
pative, stochastically excited nonlinear system is modelled 
by approximating it by a discrete Markov process. 

Applying the model of discrete Markov processes means 
that one has performed a second discretization, namely a 
spatial one, partitioning the phase space into a set of dis- 
crete states. The calculations are done on a grid, where 
each state in the phase space is attached to a cell of the 
grid and the matrix A is given by the probabilities of the 
transitions from one cell to another. These transition prob- 
abilities are found by starting particles on every grid cell 
and counting the frequency of transitions to any other cell 
of the phase space grid. 

2.1 The Macrostate Technique 

The computing time and the storage requirements can be 
reduced by performing the calculations on larger structures 
of the phase space. By joining suitable parts of the phase 
space into larger units, “macrostates”, and calculating the 
transition matrix for these larger structures the density 
function computation can be speeded up by several orders 
of magnitude. The shape of the density is almost perfectly 
represented although an average over the large areas in 
phase space forming the macrostates is involved. 

2.2 One-dimensional Models 

For one-dimensional models (corresponding to a two- 
dimensional phase space) the computations have been per- 
formed successfully on an N2 x N2-grid with IV = 30, see 
w1,[31. Th e t ime evolution of the density for a one- 
dimensional model structure of a small et/e--storage ring 
with one beam-beam interaction per revolution is shown in 
figure 1. The damping time is 1850 turns, corresponding 
to cr = 5.4 10m4, the beam-beam parameter is E = 0.029 
and the beam sizes are LT = 7.10w4m = uTCr and p’ = 0.9m. 
Depicted are ~(1, p,) after 4630 turns corresponding to 2.5 
damping times r~ and after 46300 turns corresponding to 
25 r~. In figure 2 the phase space density after 25 damp- 
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Figure 1: Evolution of a one-dimensional density function 
p(z,p.) calculated via fine grid mapping for the example 
beam-beam model with & = .16 and < = 0.029. Shown 
are p(z,pz) after 2.57~ and after 25~~. The maxima of 
the density corresponding to the B-resonance clearly show 
UP. 

ing times for a Q-value of Q = .21 is shown for the same 
model ring, calculated via the macrostate method. 

2.3 Two-dimensional Models 

The matrix algorithm has been extended to two- 
dimensional beam-beam systems. This extension is in 
principle possible but requires the generation of an N x 
N x N x N grid on the phase space and the storage for 
an [N x N x N x N12 matrix as time propagator. For 
a 30 x 30 grid this would mean a need for storage in the 
range of several Gbyte. 

The main difficulties are thus the limitations in com- 
puting time and available storage capacity together with 
the need to approximate the more complicated dynamics 
as close as possible. Several ways to treat these problems 
have been investigated. 
The first method is to make the grid partition as fine as 
possible. N = 16 has successfully been used. In order 
to make sure that there will be sufficient storage available 
for the propagator matrix, one has to know the maximum 

Figure 2: Density function p(z,p,) calculated with the 
macrostate method for the example beam-beam model 
with & = .21 and t = 0.029. Shown is p(r,p=) after 25~0. 

possible states that can appear ss initial and final states 
in this matrix. This knowledge is needed before the calcu- 
lation of the matrix starts and can be gained by making a 
run of a “just counting” version of the program which only 
counts the maximum numbers of possible initial states and 
corresponding final states that are needed for the indirect 
addressing. 
The second way of computing the time propagator avoids 
this need for previous information by allocating the stor- 
age at run time of the program which can be done in a C 
version of the program. In this case the indirect address- 
ing of the matrix elements is done via pointers and linked 
lists. 

3 LIFETIME STUDIES 

Particles exceeding the given limiting coordinates or mo- 
menta are lost rapidly. The density function vanishes at 
the absorbing boundaries which are for example given by 
the walls of the vacuum chamber of the beam pipe or some 
scraping devices in the beam line. The diffusion process 
due to the stochastic forces continually replenishes the re- 
gions near the boundary and thus there is a constant flux 
of particles out of the core of the distribution. 

The lifetime nife is defined as the inverse of the expo- 
nential decay rate of the density and in the approximation 
of small damping the lifetime nifc can be estimated from 
the Kramers formula [5]: 

t &,a 2 
vlije = 2 

.fT = 7DeIj, 
~YWIGT n2 

where the emittance c is given by c = 
f 

and ymaz 
is determined by the physical aperture A o the vacuum 

chamber (A = nc, y$,, = ($)min). 
A measure for the total number of particles is obtained 

by summing the density of all cells of the phase space grid. 
The loss rate consequently is the decrease of this summed 
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Figure 3: Phase space density for a two-dimensional beam- 
beam model with Qc = .12, QZ = .31 and & = 0.017,& = 
0.019 after 200 turns, corresponding to ro/2 and after 
10000 turns, corresponding to 25~~. Shown are the pro- 
jections p(1,2). 

density p,,,,,, . With the ansatz 

Psum(t) = psum(0)e-AL (2) 

the lifetime qife is given by rrilc = k. 

3.1 Lifetime Calculations for One-dimensional 
Systems 

The investigated example is the same one-dimensional 
small e+/e--storage ring as before. The range of Q-values 
for the scan shown in figure 4 is taken from Q = 5.10 to 
Q = 5.21. Boundaries are imposed at f6o in both coor- 
dinates. The computing time necessary to calculate the 
density up to 25 damping times has been about 10 CPU 
seconds in the macrostate version of the program, about 
30 CPU seconds in the finer grid version and about 2 CPU 
hours for following 50 particles/cell for 25 damping times 
the usual way (on an HP9000/735 workstation). 

3.2 Lifetime Calculations for Two-dimensional 
Systems 

Neglecting dispersion in the calculations, the Kramers for- 
mula can be applied for both transversal directions [5]. 
Adding the nonlinear perturbation to the system, the life- 
time predictions of the Kramers formula are only a rough 
estimate of the order of magnitude of the density decay and 
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Figure 4: Lifetime in dependence on the Q-value for the 
one-dimensional beam-beam mode1 with < = 0.029 calcu- 
lated with the three different methods. 

Table I: Lifetime ni/e in dependence on the boundary 
50 6a 70 8a 

TKramerr 4.3 * 10s 7.3.10s 3.7.101’ 4.9. 1or4 
rI?Wp 5.4. lo6 2.7. 10’ 2.1. 10”’ 2.2. 10’” 

of its dependence on the position of the absorbing bound- 
aries. Table 1 shows the results of lifetime calculations 
with the two-dimensional mapping scheme. The Kramers 
formula overestimates the lifetime in the range where rtifc 
is no longer determined by the absorbing boundary but by 
the beam-beam interaction. 

4 SUMMARY 

In this paper we have shown how an algorithm for calcu- 
lating the time evolution of the phase space density func- 
tion can be applied for lifetime calculations. Using this 
method fast tune scans can be performed. The algorithm 
turns out to be less computing time consuming than usual 
tracking. The described method has been extended to the 
two-dimensional case and comparisons with direct tracking 
show good agreement. 
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