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Abstract 

The penetrating of a beam magnetic field into walls of a 
ring accelerator vacuum chamber provides an increase of 
Coulomb tune shifts from a head of a bunch, or bunch train 
to their tail. The effect can be practically important for 
accelerators with a low revolution frequency, mainly when 
there is a non-regular orbit filling by beam. The gener- 
al formulae for incoherent tune shifts and the numerical 
results for the UNK accelerator are obtained. 

1 INTRODUCTION 

Common results for incoherent Coulomb tune shift in a 
bunched be.am were obtained under an assumption of no 
penetration of an alternating magnetic field of the beam 
into vacuum-chamber walls 11, 21. An independence of the 
tune shifts upon the position of a particle in a bunch is 
the most significant consequence of this assumption for 
very high energies, when the terms with factor rW2 can 
be neglected. Such shifts can be easily compensated by a 
tune correction system. As a result, only the limitations 
caused by a difference between coherent and incoherent 
tune shifts remain, which is not a serious problem. It is 
such a relatively favorable situation that has been expected 
for the UNK accelerator [2]. 

As a matter of fact, various harmonics of the magnet- 
ic field do penetrate into chamber wall up to a relevant 
skin-depth, the latter is comparable to the wall thickness 
in large accelerators (e.g., the skin-depth equals 3.5 mm 
for revolution frequency of 14.4 kHe in the UNK-1). It 
entails that the magnetic field would eventually penetrate 
into walls after passage of bunch. This paper shows an in- 
crease of Coulomb tune shift in direction from a head of a 
bunch, or bunch train, to their tail to be the most impor- 
tant consequence of this phenomenon. The effect can be 
practically important mainly in case of a non-regular orbit 
filling by beam. For example, an additional tune spread of 
0.03 emerges in the UNK-1 accelerator, a total tolerable 
value of the spread being 0.05 (31. 

2 CALCULATION OF TUNE SHIFTS 

To describe the beam-induced field, use is made of a scalar 
potential 7’, and of a vector potential with longitudinal 
component A. Then, equation for horizontal betatron os- 
cillations reads: 

$fG(B)x=& -g+pg , > (1) 

with G the coefficient of magnetic rigidity, the other nota- 
tions being standard. 

It is convenient to expand the beam charge density, as 
well as the field potentials, into a Fourier series 

p = ef(2,z) ~(6 - w,t) = ef(x, z) x uke‘k(t)-w*ti, (2) 
k 

3 =: e c vk@k$k(e-unr); A .L. e c V~Akeik(B-w’t), (3) 
k k 

where v is the number of particles per unit of chamber 
length, W, is the revolution velocity, f is a normalized func- 
tion describing the distribution of particles in the beam 
cross-section. Then, for small oscillations, eq.( 1) yields: 

2 + G(6)x = 

C?‘@k 2 a24 
-F+p -@- 

ikB 
Vke , 

where ro is the electromagnetic radius of a particle, 0 
is the distance from tram’s front to the particle; all the 
derivatives are taken at the origin of coordinates. Solu- 
tion of this equation gives the following value of incohereht 
Coulomb tune shift: 

(5) 

where p, is a horiaontal p-function, (. .) denotes an aver- 
aging over a turn. 

Fields +k and & obey the similar equations, e.g.: 

d2& d2Ak 
- - = -4xf(z,z). 
022 + a22 

These include both the beam and wall-image fields. The 
first one is well-known, and is vanishingly small for high 
energy accelerators due to rm2-factor [4]. Therefore, only 
the image fields are investigated. 

Functions ‘PI: satisfy homogeneous boundary conditions 
of the first kind at the vacuum chamber wall, while A0 
obeys these of the second kind at the yoke surface. Fol- 
lowing [2], their derivatives can be written as 

where b,,. are semi-axes of the vacuum chamber, gr,l are 
these for the yoke which is as well supposed to be elliptical. 
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Figure 1: Form-factors for elliptical chamber. 

Positive quantities c and ~1 depend on ratio of semi-axes, 
and are shown iu Fig.1 (see also Appendix). Dimension- 
al multipliers in eq.(7) show straight-forwardly that the 
boundaries do not affect the incoherent tune shift iu an 
axially-symmetrical system. 

The boundary conditions, as well as the solutions for 
harmonics Ah..+o, are discussed in Appendix. Use these 
results to put down: 

(8) 

x (;+$) (1+J$ jky, 

where 6 is skin-depth at frequency w,, and a positive coef- 
ficient < is close tlo 1 (Fig.1). 

Substitute eqs.(7),(8) into eq.(5) to get: 

AQx = ~{3*6aF9(“‘(3,((+-;) (;+;)) 

+ (l+&-)(~+a,, 

+ (w(;-;))}~ (9) 

F(9) = :Re (1 + ;) 2 z IkJ-‘/ae’kd, 
k=l 

(10) 

where Ah9 is the train’s length. 
Suppose all bunches of the train to be identical and 

equidistantly located. Then 

vk -= sin(kAi9/2) ,ik(&,-A$/Z) 

VO kAt?/2 1 (11) 

where 6o is the train’s front position. Plots of functions 
F(d) for this case are shown in Fig.2 where tie = 2x, 
At?/2r = 0.1, 0.2.,. . . , 1. The trains are moving from left 
to right, and a position of train’s tail coincides with the 
break-point of a curve. 

The similar formula for AQ, can be got from eq.(9) by 
a mere permutation of indices I and I. Coefficients c, p, 
c’ are the same because the image fields inside a chamber 
satisfy a Laplace equation. 

Figure 2: Function F(r9) for rectangular train. 

3 EXAMPLE 
As an example, consider the first stage of the UNK- 
accelerator which is to be arranged of 2 types of dipole 
magnets: 

Type A: b, = 23 mm, 6, = 45 mm, ga = 24 mm, 
p, = 109 m, /3, = 49 m, E = 0.92, C = 0.91; 
Type B: b, = 31 mm, b, = 3.5 mm, ga = 32 mm, 
P, = 49 m, 0% = 109 m, E = 1, c = 0.99, 

where the average value of &function for each dipole type 
is given. It is possible to treat the width of dipole poles as 
an infinite one, in which case take p=xa/6 and multiply 
the relevant part of the formula by factor 0.606. The latter 
is the ratio of net length of dipoles to the orbit length, 
On putting into eq.(ll) values 6 = 3.5 mm and 7 = 69.3 
(injection) one obtains: 

AQI = 3.4. 10--16N + 4.5.10-@&d), (12) 

-AQz = 2.5. 10-16N + 2.6. 10-17sF(il). (13) 

The accelerator is to be filled by 12 injection pulses. Each 
of them contains 5.1013 particles and has azimuthal length 
A9 = 0.078. In which case eqs.(l2), (13) give: 

‘IT “fi 

I(. “r’ 

C‘, il,i 

‘(1 *A 

if’ li 

lf- ‘/, 

:r: ” 

i 

AQx = 0.017 m + 0.029 F(d), 

-AQ, = 0.0125m + 0.0165 F(0). 
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Figure 3: Distribution of Q, along train. 
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(15) 
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where m is a number of injection pulses. Fig.3 shows the Harmonic Ao obeys boundary condition BAo/B< = 0 at 
distribution of horizontal betatron frequencies along the the yoke surface, i.e. 
ring after each injection pulse. It is possible to adjust a 
correction regime so as to provide average betatron fre- 
quencies in the train to be constant. Then one gets a 

p r= 2 sinha to 2 n e- anCo 
n=l sinh 2741’ (21) 

picture similar to that shown in Fig.2, but with a maxi- 
mum spread of AQX = 0.032. Distribution of AQs has the where, of course, (0 = arctan(g,/g,). 

same pattern, but with an extra coefficient of -0.57. Harmonics A~fo inside a chamber wall follow the equa- 
tion: 

4 REFERENCES a2As daAl, 

[1] L.J. Laslett, Proc. of 7-th Int. Conf. on High Energy Accel., -+v= 3x2 
-2i u c (cosh’t - cos2~)Ak, (22) 

k 6: 
Yerwan, 1969, ~01.2, p.326. 

[z] V.I. Balbekov, Proc. of 9-th USSR Conf. on High Euergy 
where 61: is a skin-depth at frequency kw,. Solution in a 

Accel., Dubua. 1985, ~01.2, p.335 (in Russian). 
thick-wall approximation is 

[3] V.I. Balbekov and P.N. Chirkov, Preprint IHEP 82-133, 
Serpukhov, 1982 (in Russian). 

[4] D.W. Kerst, Phys. Rev., ~01.60, p.47, 1941. 

AI cx exp{z (-l+iF) d-}, (23) 

which gives the boundary condition at the inner surface of 

5 APPENDIX. CALCULATION OF the chimber wall: 

ELECTROMAGNETIC FIELD 

Solve eq.(6) by using an elliptical coordinate system: 
$(hrl) = & (-1++> x 

x = b cash< COST, z = b sinht sinq, (16) 
x j/w 

where b2 = bi - 6:. The chamber wall has a coordinate < = 
Whereof, the coefficients a, are to satisfy 

to = arctan(b,/b,). A b earn is supposed to be placed at 
the chambelc axis. Only the image fields being of interest, 2 + 

neglect the beam thickness. 
General solution of eq.(6) is 

4 ~(-l)“e-a~~o cos 2nr) - 
n=l 

O5 t-l)” Ak=-2( + 2x-e -24 cos2nv+ 
n 

n=l 

00 

= 

+ E a, cosh2nq. (17) X 
n=O 

Here the firist line gives the beam field in an empty space 
(to be neglected), while the last sum is the image field we 
are interested in. Take account of the latter to write down 

- 

2gno, sinh 2tio cos 2nq = 

(24) 

Akt(t’o, rl). 
the set of eqs.: 

n=l 

(-1+ i?) -&/S~ X (25) 

( 

O” (-1)” - 
2&)-22-----e 2nCo cos 2n7j - 

n=l 
n 

t: a,, cash 2n& cos 2ns) . 
n=O 

the derivatives for eq.(5) as Its solution, up to the first approximation in &k/b, is: 

82Ak 
$ g&t = 0, r) = a/2) = %#O = - 

2(-l) ne-wo 
-- = 
8x2 n cash 240 

+ 6k(l+ Wk) x (1+ Wk) x 
xbcosh 2n.&, b cash 2n.&, (26) (26) 

= -$ fj-l)“na~. (18) 
cos 2nq COB 2rnvdv 

n=l x mgm coL’,‘~o i ;:Jgy:::;* 
--T 

Coefficients a, can be found by boundary conditions. 
Scalar potential is aero at the chamber wall. Hence, Use definition of eq.(8) and take account of eq.( 19) to ob- 

tain: 

a0 = 2C0; G&20=- 

2( - 1)” em2d0 

n cash 2n& * (27) 

Therefore, definition of eq.( 7) gives: 

c=2sinhaEog 
n e-anto 

n=l cash 240’ 
(20) 


