Theory of the Tune Shift Due to Linear Coupling

G. Parzen
Brookhaven National Laboratory
Upton, NY 11973, USA

Abstract
This paper presents analytical perturbation theory results for \(\nu_1, \nu_2 \), the tune in tune presence of linear coupling.

1 INTRODUCTION
The presence of skew quadrupole fields will linearly couple the \(x \) and \(y \) motions. The \(x \) and \(y \) motion can then be written as the sum of two normal modes, which have the tunes \(\nu_1 \) and \(\nu_2 \) which are different from the tune, \(\nu_x, \nu_y \), in the absence of the skew quadrupole fields.

This paper presents analytical perturbation theory results for \(\nu_1, \nu_2 \). The results for \(\nu_1, \nu_2 \) are first found correct to lowest order in the skew quadrupole fields. The results for \(\nu_1, \nu_2 \) are then carried one step further to include the next higher order terms in the skew quadrupole fields.

These analytical results show that for the higher order shift in tune the important harmonics of the skew quadrupole field are the harmonics near \(\nu_x + \nu_y \). However, the harmonics closest to \(\nu_x + \nu_y \) do not contribute to the higher order tune splitting, \(|\nu_1 - \nu_2| \), as they shift \(\nu_1 \) and \(\nu_2 \) about equally. This results in a lack of a dominant harmonic for the higher order contribution of \(|\nu_1 - \nu_2| \), which complicates the understanding and correction of the higher order contribution to \(|\nu_1 - \nu_2| \).

Analytical results are found for the residual tune splitting which is the \(|\nu_1 - \nu_2| \) that remains after the driving term of the nearby difference resonance has been corrected.

2 LOWEST ORDER SOLUTION FOR THE MOTION
The equations of motion can be written as

\[
\begin{align*}
\left(\frac{d^2}{d\theta_x^2} + \nu_x^2 \right) \eta_x - b_x(s) \eta_y &= 0 \\
\left(\frac{d^2}{d\theta_y^2} + \nu_y^2 \right) \eta_y = b_y(s) \eta_x \\
x &= \beta_x^{1/2} \eta_x, \quad y = \beta_y^{1/2} \eta_y \\
\theta_x &= \int ds \left(1/\nu_x \theta_x \right) - \psi_x/\nu_x \\
\theta_y &= \int ds \left(1/\nu_y \theta_y \right) - \psi_y/\nu_y \\
b_x(s) &= \nu_x^2 \beta_x \left(\beta_x \beta_y \right)^{1/2} (a_1/\rho) \\
b_y(s) &= \nu_y^2 \beta_y \left(\beta_x \beta_y \right)^{1/2} (a_1/\rho)
\end{align*}
\]

\(|\nu_1 - \nu_2| \) = \(|\nu_x - \nu_y| \), as they shift \(\nu_1 \) and \(\nu_2 \) about equally. This results in a lack of a dominant harmonic for the higher order contribution of \(|\nu_1 - \nu_2| \), which complicates the understanding and correction of the higher order contribution to \(|\nu_1 - \nu_2| \).

Analytical results are found for the residual tune splitting which is the \(|\nu_1 - \nu_2| \) that remains after the driving term of the nearby difference resonance has been corrected.

The skew quadrupole field is described by \(a_1(s) \). On the median plane, the field \(B_x \) is given by

\[B_x = -B_0 \frac{a_1 x}{\rho} \]

where \(B_0 \) is the main dipole field. \(\rho \) is the radius of curvature in the main dipole.

To simplify the solutions of Eq. (2.1), we introduce \(\zeta_x \) and \(\zeta_y \) such that

\[\eta_x = \zeta_x + \text{c.c.}, \quad \eta_y = \zeta_y + \text{c.c.} \]

\(\zeta_x \) and \(\zeta_y \) also satisfy Eq. (2.1). In addition, when \(a_1 = 0 \), the solution for \(\zeta_x, \zeta_y \) is

\[\zeta_x = A \exp(i \nu_x \theta_x), \quad \zeta_y = B \exp(i \nu_y \theta_y) \]

We are looking for a solution of Eq. (2.1) which is valid when \(\nu_x, \nu_y \) are close to the coupling resonance \(\nu_x - \nu_y = p \), \(p \) being some integer. The solution for \(\zeta_x, \zeta_y \) will be assumed to have the form

\[\zeta_x = A_x \exp(i \nu_x, \theta_x) + \sum_{r \neq s} A_r \exp(i \nu_r, \theta_r), \quad \zeta_y = B_y \exp(i \nu_y, \theta_y) + \sum_{r \neq s} B_r \exp(i \nu_r, \theta_r) \]

\(\nu_x, - \nu_y, = p \).

The \(A_r \) are assumed to be small compared to \(A_x \), and the \(B_r \) small compared to \(B_y \). \(\nu_x \), \(\nu_y \), \(\nu_x \), \(\nu_y \), will give the \(\nu \) values of the normal modes. The normal mode \(\nu \) values are \(\nu_1, \nu_2 \) and we assume \(\nu_1 \rightarrow \nu_x \) and \(\nu_2 \rightarrow \nu_y \) when \(a_1 \rightarrow 0 \), then \(\nu_x \), \(\nu_y \) for the \(\nu_1 \) mode, and \(\nu_y \), \(\nu_y \) for the \(\nu_2 \) mode, when \(a_1 \rightarrow 0 \). The justification for choosing this form for the solutions, and the choice of the \(\nu_x, \nu_y \) present will come out of the solution one finds using this form.

The \(\nu_x, \nu_y \) for \(r \neq s \) will be seen to have the form

\[\nu_x, \nu_y = n + m \]

where \(n, m \) are integers. This could be assumed from the beginning. An alternative procedure is not to restrict \(\nu_x, \nu_y \), and to make the \(\exp(i \nu_x, \theta_x) \) an orthogonal set by choosing \(\nu_x, \nu_y = (2\pi/T)q \), \(q \) is some integer and \(T \) is some very large angle, and treating \(\nu_x, \nu_y \) similarly. Putting Eq. (2.4) into Eq. (2.1) and using the orthogonal property, one finds

\[(\nu_x^2 - \nu_y^2 - 2\nu_y) A_r = -2\nu_y \sum_{r \neq s} b_x (\nu_x, \nu_y, \nu_x, \nu_y, B_r) \]
(\nu^2_{y,r} - \nu^2_y) B_r = -2\nu_y \sum b_y (\nu_y,r,\nu_{x,r}) A_r, \\
\nu r (\nu_{x,r},\nu_{y,r}) = \frac{\nu_r}{2\text{TI}} \int_0^\pi \text{d} \theta \beta_y (\beta_x \beta_y) \frac{1}{2} (a_1/\rho)^{\text{exp}} \{i (-\nu_{x,r} \theta_x + \nu_{y,r} \theta_y)\}, \\
(\nu^2_{y,r} - \nu^2_y) B_r = -2\nu_y b_y (\nu_{y,r},\nu_{x,r},\nu_{x,s}) A_s, \\
(\nu^2_{x,s} - \nu^2_x) A_s = -2\nu_x b_x (\nu_{x,s},\nu_{y,s},\nu_{x,s}) A_s, \\
(\nu^2_{x,r} - \nu^2_x) A_r = -2\nu_x b_x (\nu_{x,r},\nu_{y,r}) B_s, \\
(\nu^2_{y,s} - \nu^2_y) B_s = -2\nu_y b_y (\nu_{y,s},\nu_{x,s}) A_s, \\
(\nu^2_{y,r} - \nu^2_y) B_r = -2\nu_y b_y (\nu_{y,r},\nu_{x,r}) A_s.

The first two equations in Eq. (2.7) are homogeneous equations for \(A_s \) and \(B_s \), and the \(\nu \)-values \(\nu_{x,r}, \nu_{y,r} \) are determined by requiring the matrix of the coefficients of \(A_s, B_s \) to vanish. This gives
\[
(\nu^2_{x,s} - \nu^2_x) (\nu^2_{y,s} - \nu^2_y) = 4\nu_x \nu_y |\Delta \nu (\nu_{x,s},\nu_{y,s})|^2 \\
\Delta \nu (\nu_{x,s},\nu_{y,s}) = \frac{1}{4\pi} \int_0^{2\pi} \text{d} \beta_x (\beta_x \beta_y) \frac{1}{2} (a_1/\rho)^{\text{exp}} \{i (-\nu_{x,s} \theta_x + \nu_{y,s} \theta_y)\}. \\
|\nu_{x,s} - \nu_{y,s}| = p
\]
Eq. (2.8) can be simplified by assuming that \(\nu_{x,s}, \nu_{y,s} \) are close to the resonance line \(\nu_{x,s} = \nu_{y,s} = p \) and \(\nu_{x,s} \approx \nu_x \) and \(\nu_{y,s} \approx \nu_y \). Keeping terms of lowest order only, one gets
\[
(\nu_{x,s} - \nu_{y,s})(\nu_{y,s} - \nu_y) = |\Delta \nu (\nu_{x,s},\nu_{y,s})|^2 \\
\nu_{x,s}, \nu_{y,s} = p
\]
Eq. (2.9) has two solutions for \(\nu_{x,s}, \nu_{y,s} \). We denote by \(\nu_1 \) the value of \(\nu_{x,s} \) that goes to \(\nu_{x,s} \) when \(a_1 \rightarrow 0 \), and \(\nu_2 \) the value of \(\nu_{y,s} \) that goes to \(\nu_y \) when \(a_1 \rightarrow 0 \). The solutions can be written as
\[
\nu_1 = \nu_x \pm \left\{ \left(\frac{\nu_x - \nu_y - p}{2} \right)^2 + |\Delta \nu (\nu_x,\nu_y)|^2 \right\}^{\frac{1}{2}}, \\
\nu_2 = \nu_y \pm \left\{ \left(\frac{\nu_x - \nu_y - p}{2} \right)^2 + |\Delta \nu (\nu_x,\nu_y)|^2 \right\}^{\frac{1}{2}}, \\
\nu_x = (\nu_x + \nu_y + p)/2, \nu_y = (\nu_y + \nu_x - p)/2
\]
For the \(\pm \) sign is used when \(\nu_x > \nu_y + p \) for \(\nu_1 \) and the opposite sign for \(\nu_2 \). In \(\Delta \nu (\nu_{x,s},\nu_{y,s}) \), \(\nu_{x,s} \) has been replaced by \(\nu_x \), and \(\nu_{y,s} \) by \(\nu_y \), which introduces a higher order error that can be neglected.

From Eq. (2.10) one finds
\[
|\nu_1 - \nu_2 - p| = 2 \left\{ \left(\frac{\nu_x - \nu_y - p}{2} \right)^2 + |\Delta \nu (\nu_{x},\nu_{y})|^2 \right\}^{\frac{1}{2}}, \\
|\nu_1 + \nu_2 - \nu_x + \nu_y| = 2 \left\{ \left(\frac{\nu_x - \nu_y - p}{2} \right)^2 + |\Delta \nu (\nu_{x},\nu_{y})|^2 \right\}^{\frac{1}{2}}
\]
3 HIGHER ORDER SHIFTS IN \(\nu_1 \) & \(\nu_2 \)
To find a higher order result for \(\nu_1 \) and \(\nu_2 \), one has to find higher order equations for \(A_s, B_s \) by putting the lower order solution for \(A_r, B_r, r \neq s \), given by Eq. (2.7) into Eq. (2.6).

Eq. (2.7) for \(A_s, B_s \) can be somewhat simplified by assuming that \(\nu_{x,s}, \nu_{y,s} \) are close to the resonance line \(\nu_{x,s} = \nu_{y,s} + p \) so that one can assume that \(\nu_{x,s} \approx \nu_x \) and \(\nu_{y,s} \approx \nu_y \) and then
\[
A_r = -\frac{2\nu_y b_y (\nu_{x,s},\nu_{y,s},\nu_{x,s})}{(n + \nu_x + \nu_y)(n - p)} B_s, n \neq p \\
B_s = -\frac{2\nu_y b_y (\nu_{x,s},\nu_{y,s})}{(n + \nu_x + \nu_y)(n + p)} A_s, n \neq -p
\]
where \(\nu_{x,s} = \nu_{y,s} + n \) and \(\nu_{x,s} = \nu_{y,s} + n \).

Putting these results for \(A_s, B_s \) in Eq. (2.6) one finds the improved equations for \(A_s, B_s \)
\[
(\nu^2_{x,s} - \nu^2_x - \Delta_x) A_s = -2\nu_x b_x (\nu_{x,s},\nu_{y,s},\nu_{x,s}) B_s, \\
(\nu^2_{y,s} - \nu^2_y - \Delta_y) B_s = -2\nu_y b_y (\nu_{y,s},\nu_{x,s},\nu_{x,s}) A_s.
\]
Eq. (3.2) gives the equation for \(\nu_{x,s}, \nu_{y,s} \),
\[
(\nu^2_{x,s} - \nu^2_x - \Delta_x) (\nu^2_{y,s} - \nu^2_y - \Delta_y) = 4\nu_x \nu_y |\Delta \nu (\nu_{x,s},\nu_{y,s})|^2
\]
(3.3)
Eq. (3.3) was obtained by using the result for \(A_r, B_s \) which is first order in \(a_1 \). By iterating Eq. (2.6) one can find a result for \(A_r, B_s \) to second order in \(a_1 \) which will change Eq. (3.3) by replacing \(\Delta \nu \) by
\[
\Delta \nu \rightarrow \Delta \nu + \Delta \nu^{(3)}\]
(3.4)
where \(\Delta \nu^{(3)} \) is third order in \(a_1 \). By going one step further and iterating Eq. (2.6) to find results for \(A_r, B_s \) to third order in \(a_1 \) will change Eq. (3.3) by replacing \(\Delta_x, \Delta_y \) by
\[
\Delta_x \rightarrow \Delta_x + \Delta_x^{(4)}, \Delta_y \rightarrow \Delta_y + \Delta_y^{(4)}
\]
(3.5)
where \(\Delta_x^{(4)}, \Delta_y^{(4)} \) are fourth order in \(a_1 \). One can write down all these higher order terms. However, the expression Eq. (3.3) keeping terms up to second order in \(a_1 \) is probably sufficient here.

One should also note that in Eq. (3.3) \(\nu_{x,s} \) and \(\nu_{y,s} \) also occur implicitly in \(\Delta \nu (\nu_{x,s},\nu_{y,s}) \) which complicates
the solution of Eq. (3.3) for v_1, v_2. Solutions can be found depending on the size of $\Delta \nu$ and the distance from the resonance line $v_1 = v_2 + p$.

One interesting case is when a family a_1 correction system is used to make $\Delta \nu = 0$, and when v_1, v_2 are very close to the resonance line $v_1 - v_2 = p$, so that $v_1 = v_2$ and $v_3 = v_2$ with an error that is second order in a_1. Very close to the resonance line, so that in Eq. (2.10) $(v_2 - v_3 - p)^2 / 4$ can be neglected compared to $|\Delta \nu|^2$, then the above can be achieved by making $\Delta \nu (v_2, v_3) = 0$ as shown in Eq. (2.10).

This corresponds roughly to the situation when a 2 family a_1 correction system is used to cancel the driving term of the nearby difference resonance, $v_1 - v_2 = p$. In this situation, one can find the shift in v_2, v_3 and v_4 due to the second order $\Delta \nu, \Delta \nu$. Then in Eq. (3.3) $\Delta \nu (v_2, v_3, v_4)$ is not zero but differs from zero by terms of order a_3^1, and thus $|\Delta \nu|^2$ is of order a_3^2. For this result, the previous observation, that higher order terms can only change the $\Delta \nu$ term by $\Delta \nu (3)$, a term of third order, is significant. As $|\Delta \nu|^2$ is of order a_3^1, one can treat it as being zero, and Eq. (3.3) becomes

$$v_1 = v_2 + \frac{1}{2\nu_2} \Delta \nu_1, \quad v_2 = v_3 + \frac{1}{2\nu_2} \Delta \nu_2.$$ \hspace{1cm} (3.7)

Thus for the case when $\Delta \nu = 0$ and close to the resonance line, there is a second order in a_1 shift in the $v-$values given by $\Delta \nu / 2u_2, \Delta \nu / 2u_3$. Eq. (3.2) for $\Delta \nu, \Delta \nu_2$ show that the largest second order ν-shifts will come from harmonics in v_1 close to $v_2 + v_3$. The driving terms b_1 and c_n for n closest to $v_2 + v_3$ contribute most to the second order ν-shifts.

One may also notice that b_1, c_n, as given by Eq. (3.2), are just the usual stop-band results for the $v_1 + v_2 = n$ resonance but evaluated at particular points on the resonance line. b_1 corresponds to the point $n - v_1, v_2$ and c_n to the point $v_1, n - v_2$. For the $n-$values corresponding to resonance lines closest to the unperturbed v_1, v_2, these points on the resonance are not far apart and the b_1 and c_n are about equal. Thus for the $v_1 + v_2 = n$ lines closest to the unperturbed v_1, v_2, v_1 and v_2 are shifted about equally and these b_1, c_n do not contribute much to the residual $|v_1 - v_2|$. This lack of a dominant harmonic for the residual $|v_1 - v_2|$ makes the correction of the residual $|v_1 - v_2|$ more difficult.

Eq. (3.7) has been checked\footnote{1} by comparing these results with numerical computations of v_1, v_2. For the case of $v_1 = v_3$ resonance line, $p = 0$, Eq. (3.3) may be solved for v_1, v_2, v_3, v_4 and written as

$$v_1 = \frac{1}{2} \left(v_2^2 + v_3^2 \right) \pm \sqrt{\left(\frac{v_2^2 - v_3^2}{2} \right)^2 + 4v_2v_3|\Delta \nu (v_1, v_2)|^2} \quad \frac{1}{2}$$

$$v_2 = \frac{1}{2} \left(v_2^2 + v_3^2 \right) \mp \sqrt{\left(\frac{v_2^2 - v_3^2}{2} \right)^2 + 4v_2v_3|\Delta \nu (v_1, v_2)|^2} \quad \frac{1}{2}$$

$$v_3 = v_2 + \Delta \nu, \quad v_4 = v_3 + \Delta \nu$$ \hspace{1cm} (3.8)

v_1 is the mode that goes to v_2 when $a_1 \rightarrow 0$, and v_2 goes to v_2. For the \pm sign, the \mp sign is used when $\nu_2 > \nu_2$ for v_1 and the opposite sign for v_2. One can derive Eq. (3.7) from Eq. (3.8) when $\Delta \nu (v_1, v_2) = 0, v_2 \frac{1}{2} (v_1 + v_2)$, and close to the resonance line $v_2 = v_3$.

4 ν-shifts when v_1, v_2 are far from the $v_1 = v_2 = p$ resonance line

In the derivation of the previous results, v_1, v_2 were assumed to be close to the $v_1 = v_2 = p$ resonance line.

When v_1, v_2 are far from the resonance line the results are less interesting as the ν shifts are of higher order and smaller. However, it is interesting to see how the results for the ν shifts in these two cases will fit together.

Up to Eq. (2.6) the previous derivation will hold when v_1, v_2 are far from the $v_1 = v_2 = p$ resonance line. Let us first consider the v_1 mode where $v_1 - v_2$ when $a_1 \rightarrow 0$. In this case, it is assumed that not only the a_1 are small compared to A_2, but also B_2 is small.

To lowest order, Eq. (2.7) become

$$\left(v_1^2, v_1^2 \right) A_1 = 0, \quad \left(v_1^2, v_1^2 \right) A_2 = 0$$

$$\left(v_1^2, v_1^2 \right) B_1 = -2 \nu_1 \nu_2 (v_1, v_2, v_1, v_3) A_1$$

$$v_1 = v_2 + n.$$ \hspace{1cm} (4.1)

Thus to lowest order, $v_1 = v_2$.

And the tune shift is a higher order effect in a_1. To find the second order shift in v_1, the result for B_2 in Eq. (4.1) is put into Eq. (2.6) and the A_2 equation becomes

$$\left(v_2^2, v_2^2 \right) A_2 = \overline{\Delta x} A_2.$$ \hspace{1cm} (4.2a)

$$\overline{\Delta x} = 4 \nu_2 \nu_2 \sum_n \frac{|c_n|^2}{(n - \nu_2)^2 - \nu_2^2}$$

$$c_n = \frac{1}{4 \pi} \int ds a_1 (\beta \delta \beta) \frac{1}{4} \exp \left(i ((n - \nu_1) \theta_1 + \nu_2 \theta_2) \right).$$

This gives the shift in v_2.

The $\overline{\Delta x}$ is similar to the Δx in Eq. (3.2) except that we now do not assume that $v_1 = v_2 \approx p$ and the sum over n is over all n. This result, Eq. (4.2b), can be obtained from Eq. (3.3) if in Eq. (3.3) we assume that

$$\left(v_2^2 - v_2^2 - \Delta y \right) \approx \left((v_1 - p)^2 - v_2^2 \right),$$

and not replace $v_1 - v_2$ by p in Eq. (3.2) for Δx.

In the same way one finds for the v_2 mode,

$$\nu_2 = \nu_2 + \Delta \nu, \quad \Delta \nu = 4 \nu_2 \nu_2 \sum_n \frac{|b_n|^2}{(n - \nu_2)^2 - \nu_2^2}$$ \hspace{1cm} (4.3)

$$b_n = \frac{1}{4 \pi \rho} \int ds a_1 (\beta \delta \beta) \frac{1}{4} \exp \left(i ((n - \nu_2) \theta_1 + \nu_2 \theta_2) \right).$$

5 REFERENCES