
321

Controlling the ESRF Accelerators

Ii.-D.Klotz on behalf of the ESRF Controls Group*
European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France

1 System Overview

Architecture: The ESRF control system is based on a multi-
level architecture of distributed hard- and software process-
ing units[l]. Logically the system is structured into four lev-
els, which we call: Console Level (Presentation), Process
Level (Application), Grorlp Level (Device Servers), and
Field Level (Eqnipments). On the lowest level eqnipments
are interfaced. Equipments are logically grouped by similar
functionality on the group level. The group level is responsi-
ble for hardware specific- and real time I/O-operations. 011
the process level practically all higher level control tasks and
physics applications are processed. Powerful multitasking ca-
pabilities and fast processing are mandatory on this level. The
console level deals with the man-machine interface’, Plrysicnlly
the system is split. into 2.5 levels. All nodes of the prcsenta-
tion and process lwel consist of workstations and file/compute
servers interconnected by Ethernet. The group level nodes are
realised by VMEbns crates. Every process level server masters
a private Ethernet segment onto which group level nodes it is in
charge of are connected. The physical boder line between group
level and field level is fuzzy. Some dumb devices are directly
interfaced to VME: I/O-boards, but most dumb devices are in-

Figure 1: Overall Layout of C:ont.rol System and Networks

terraced by means of G64 crates. Groups of G64 crates, that
interface classes of similar devices, are connected to ESRF prc-
priatary multidrop highways that are mastered by group level
crates.

Networks: Apart from the multidrop highway all computer
connections are based on the IEEE 802.3 LAN standard and
the TCPjIP protocol suite. The network is constructed using
50/125nm multimode graded index optic fibres for cabling, that
will allow a later migration to FDDI. Four networking centers
are located around the storage ring tunnel, a center comprising
a “NODE” and a wiring “HUH”. For the active stars at the
NODES, the “Lannet Multinet II” system was chosen for its
ability to operate in a single chassis and support up to four
independent backbone bus’s, III addition all backbone fibre
optic links are run in a synchronous Ethernet mode. The wiring
HUB is the central point for passive network components, i.e.
the backbone optical fibrea that link all the H1JBs together in
a circular structure around the storage ring tunnel. It also
acts as the termination point for all star wired fibres that are
attached to the \/ME systems. When installing the circular

‘A.Gotz, D.Carron, J.M.Chaiz,e, M.Fazio, C.Herve, M.Karhu,
P.M&j&i, J.Meyer, P.Pinel, Y .Nicolas, B.Regad, V. Rey-Bakaikoa,
M.Schofreld, R.Scaringella, A.Smith, E.Taurel, I”.Vincs, R.Wilcke

1 MM1

backbmc, provision for 10 independent rings has been made,
out of which four will be used initially. One ring functions as
the main control segment, to which all upper layer processors
are connect.ed. There are three dedicated process SP~~X~S that
operate as network gateways to the other three rings. The
latter are used as proce.$s segments to which all middle layer
VME systems are connected.

Coxriputers: The consoles in the c-ontrol room are III’
Apollo 9000 Model 720/CRX’ workstations. Their local disks
hold the bootable image of the operating system and provide
local swap space. File systems containing control system and
physics applications software are remotely mounted3 from the
process servers. About 7 to 10 consoles will be needed in the
main control room. As process-, file-, and data-base servers the
HP Apollo 9000 Model 750 servers were selected. Four process
servers are equipped with 128Mbytes of RAM and 1.3GBytes
of disk space. One central file server is equipped with a disk
striped mass storage system providing 8.3GBytes of capacity.
Another HP 9000/750 is running as a hot spare. All VME sys-
tems have an identical base configuration. This comprises a

232Mbyte RAM, 6OOh4Hyte disk
3with SUN NFS

322

Motorola 68030 CPU @ 20 MHz, 4 Mbyte RAM, and on-board
Ethernet adapter. All systems are running in a diskless config-
uration for case of maintenance and reliability’. System start-
up, -reboot, ;and remote crate diagnostics are accomplished by
a dedicated VMEboard that is operated through a front panel
FBUS connection.

Interfacing; Most of the VME systems drive multidrop
FBUS highways. ‘I-his FBUS is not a general purpose network
but implements a low cost remote input,/ouput facility. It relies
on a master-slave relationship, where a controller (VME based
module) drives a large number5 of slave nodes. The nodes com-
ply with the G64 standard, so that full advantage can be taken
of existing interface boards from industry. The transmission
medium is a flexible shielded twisted-pair cable. Physical im-
plementation uses a noise resistant Manchester encoding with
transformer isolation. FBUS can still be safely operated at a
speed of lMbit/sec on distances of up to lkm and 30 nodes
without repeater. G64 and FBUS interfacing has been used for
control of main magnrt power supplies, beam position monitors,
magnet interlocks, corrector magnet power supplies, and injec-
tion/extraction elements. Other significant subsystems that in-
clude G64 crates are the system to distribute the slow timing
pulses, the video cross point switch, and the video multiplexors
for fluorescent screen monitors. The rest of devices is directly
interfaced to the VME systems; either by asynchronous serial
lines6 or digital I/OS.

Software: The workstations/servers run HP-UX; an
AT&T System 1’ Rel 3.0, and BSD 4.3 compliant implemen-
tation of the UNIX operating system. On the VME systems
we use Microware’s OS9 realtime kernel/operating system.
Microware’s TCP/IP Internet Support Package provides
Berkely sockets, and SUN’s Network File System on the OS9
systems. ThLe Man-Machine-Interface is based on the Xll-
window system and the OSF/Motif technology. The control
system data are stored in relational databaes which manage
two logical parts: Resource data, and Runtime data. The im-
plementation of the resource dat,abase uses ORACLE and its
powerful set of development tools. Programming language is C
and where available ANSI C.

2 Design Phases

PHASE 0: Phase “0” covered the period from project start
until the beginning of storage ring commissioning. It was felt
essential, tha.t commissioning should be started with a set of
first generall:on applicotron programs, specifically tailored to
this purpose, and that device interfacing and access are fully in-
plemented for all machine parts. To reach this goal, a task shar-
ing between the controls group and the machine theory group
was defined. The controls group was in charge of installing the
control syste.m hardware and implementing all device servers,
the machine theory group concentrated on writing the appli-
cation programs. 4 well defined, early available, and stable
applrcation programmer’s interjace?, played a fundamental role
in this task s,haring. Using strictly the .4PI device access inter-
face and the X11 and Motif standards for interactive graphical

‘remote booting is based on Network Boot PROhIs using the tftp
protocol

5up to 64 on one highway
6either RS422 or RS232
‘API

open connection

NFS/RPC 1 API
UDP] TCP 1 UDP

20-25ms 1 3%45ms 1 55-65ms
close connection O.l-0.2ms 0.3-0.5ms IO-20ms
RPC with lOObytes lo-15ms IS-20ms 15-20ms
RPC with 8kbytes 25-35ms 55-65ms 30-40ms
RPC with 40kbytes] 220-250ms 1 I

Tabk 1: Performance figures for RPC and API

I/O, an impressive numbrr of physics applications have been
developed in parallel with the basic control system software,
and are available for commissioning now. The controls group’s
major priorities during this phase were on:
Installation of the control system hardware: A survey
of field- and group-level hardware in terms of numbers of in-
stalled boards and system crates is given below (note that this
excludes four subcontracted control systems for LINAC and
three RF transmitters):

VME Crates 52
VME CPU 68030 8 20MHz, 4MB RAM 53
VME Digital 64 in/32 out TTI, 9
VME Serial 12 RS 422 channels 104
VME Analog 16 out, 12 bit 41
VME Video MUX 15:l 3
VME Image Processor 2
VME Stepper Motor Controler 19
VME hex prog. Delay Unit 14
VME Timing Master 1
VME Master Clock Divider 1
VME Remote Diagnostic Controler 50
VME FBUS Master Nodes 37
G64 Crates 112
G64 FBUS Slave Nodes 194
G64 Digital 16 in/out ‘ITI, 161
G64 Analog 8 in, 12 bit 190
G64 Analog 8 out, 12 bit 12
G64 Timing Pulse Driver, 2 ch. 74
Stepper Motor Power Driver 64

Development of a network transparent API: Access
to the Device Servers is provided by three C calls. These calls
allow the users to develop their applications in peace without
being affected by what goes on in the Device Server software.
Network transparency is achieved by using Remote Procedure
CallsR
Development and installation of device servers: A uni-
fied model (called the deoice server model) has been developed
to solve the problem of device access and -control. It uses a
RPC-based Client/Server technology, which is a simple mecha-
nism to distribute software tasks across any number of proces-
sors. Each device is an object created at start-up which has its
own data and behaviour. Each device has a unique name for
identification in network name space. Devices are configured
via resources which are stored in a database. Devices are orga-
nized in classes, each device belonging to a single class. Classes
are implemented in C using a technique called Objects In C.
This technique is similar to the “widget” model from the X11
Intrinsics Toolkit of MIT. All classes are derived from one root

*RPC and XDR from SUN

323

class. The root clujs contains a generic description of the device
and the basic client/server communication facilities. Subclasses
inherit attributes amd methods from parent classes. Actions on
a device are made available via commands. Commands can
be executed locality or remotely. Applications access a device
and its commands using the API. Currently 81 Device Classes
have been implem’ented, covering N 80% of the total system.
This reflects roughly: 8800 analog inputs, 7700 analog outputs,
2Kbyte digital inputs, 1.5Kbyte digital outputs, and 2.4Mbytes
of released (tested!) C source code. The latter numbers do not
include the large amount of devices for beam line front ends
and insertion devices!
Development of the static data base: The resource
database keeps device server resources and static data. Ex-
amples are: start--up resources, calibrations, equipment def-
initions, installation- & maintenance data, bookkeeping and
archive data, etc. Presently it deals with:

Devices defined
Devices exported

out of which:

4737
4206

for the LINAC domain
for the Transf. Line 1 domain
for the Synchrotron domain
for the Transf. Line 2 domain
for the Storage Ring domain
for the Front End domain
for the Beam Port domain

Resources defined
out of which:

82
41
457
73
3023
97
429
27144

for the LINAC domain 461
for the Transf. Line 1 domain 196
for the Synchrotron domain %711
for the Transf. Line 2 domain 572
for the Storage Ring domain 16186
for the Front End domain 1099
for the Beam Port domain 5312
for the Device Server Classes 590

PHASE 1: We currently enter this phase that will last the next
two years at least During this phase the control system will
be upgraded from its initial commissioning state to a system
that fully supportr, alI facets of machine operation. Apart from
small hardware amendments it is mainly development effort in
software that will take place:
API: Currently the API is based on a blocking (synchronous)
RPC. The calling client waits until the call returns from the
server before contlmuing. Eternal waits are avoided by setting
a timeout when cellling the server. The API will be extended
by a nonblocking (asynchronous) version which will dispatch
the command and then return immediately. The response from
the server will be queued and returned to the client when it is
ready to receive it.
Rnntime Database: Until now clients access devices through
device servers on ,s command/response principle. Buffering or
caching process data is the responsability of clients. We will
add a runtime database as an independent entity to the sys-
tem. This database is not a medium for permanent storage
nor for tunnelling I/O requests to the device driver level. It is
a buffering/caching front for permanent storage. Only memory
reside&database systems can meet the demands for sufficiently
short transaction t.imes. A prototype of the runtime database is
operational and uses a Real-Time Dot&use Rose Management

System’ available on HPs. This database can be used to alle-
viate congestion problems. Multiple processes can update data
asynchronously in the database. Clients can retrieve this infor-
mation synchronously without blocking the process doing the
updating. The runtime database’s prime source is a so-called
llpdote Daemon that updates machine parameters periodically.
Clients can issue booking requests for parameter updating at
runtime. Streams of on-line data can be archived continously.
Only a time window of predefined size is kept in memory by
RTDB, the rest of the data is dumped int,o the disk-based OR-
ACLE database. RTDB can also be used by applications as a
means for interprocess communication. Applications dynami-
cally dllocate “tables” of formatted data, that can then be piped
or multiplexed to other applications.
Security: Security is a key issue for a distributed system, and
will be added on the device server level. The solution adopted
here has been modelled on the Unix access control lists as de-
scribed under ACL(5) in the Unix manual. An ACL consists of
sets of (user.group, mode) entries associated with a file that

specify permissions. We will extend this idea to define permis-
sions for devices. Each entry specifies for one user-ID/group-ID
combination a set of access permissions. The permissions a user
must have to execute a command on a device are stored in the
command list of the device server The set of permissions that
we will implement for devices will be:

Read command will only read the device
Write command will write to the device
Single-Write command will write but only in

single user mode to device
Special command can only be executed by

priviledged user

Single-Special command can only be excuted by
priviledged user in single user mode

Man-Machine Interface: Both Xl 1 and Motif, are extremeIS
helpful but their libraries are complex to learn and to use for
programming. User Interface Management Systems (sometimes
called interface builders) are the tools which help the applica-
tion programmer to design the user interface part of the ap
plication interactively. ESRF selected a UIMS that generates
stand-alone C code and/or a combination of Motif-compliant
C and UIL code”. This UIMS drastically eases now the de-
sign of Motif-based user interfaces. Synoptic drawings with
selectable objects are scarcely supported by Motif. We there-
fore implemented a Motif compliant widget that uses vecto-
rial drawings generated by PHIGS”. In addition to that, pow-
erful Xll/Motif compatible tools become available now that
can be integrated into the MMI. At ESRF we started to use
the spreadsheet WINGz, which has its own control language
“HyperScript” that can be extended by user-defined C func-
tions. Complete control applications can be written by using
WINGz’s presentation- and button tools that create interactive
worksheets.

References

[l] W.-D. Klotz, “The ESRF Control Ssytem; Status and Itigh-

lights” in Proc. ICALEPS, Tsukuba, Japan, Nov. 1991.

gcalled RTDB
loBuilder Xcessory from IC!S
‘1 Programmer’s Hierarchical Graphics System

