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Controlling the ESRF Accelerators 
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European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France 

1 System Overview 

Architecture: The ESRF control system is based on a multi- 
level architecture of distributed hard- and software process- 
ing units[l]. Logically the system is structured into four lev- 
els, which we call: Console Level (Presentation), Process 
Level (Application), Grorlp Level (Device Servers), and 
Field Level (Eqnipments). On the lowest level eqnipments 
are interfaced. Equipments are logically grouped by similar 
functionality on the group level. The group level is responsi- 
ble for hardware specific- and real time I/O-operations. 011 
the process level practically all higher level control tasks and 
physics applications are processed. Powerful multitasking ca- 
pabilities and fast processing are mandatory on this level. The 
console level deals with the man-machine interface’, Plrysicnlly 
the system is split. into 2.5 levels. All nodes of the prcsenta- 
tion and process lwel consist of workstations and file/compute 
servers interconnected by Ethernet. The group level nodes are 
realised by VMEbns crates. Every process level server masters 
a private Ethernet segment onto which group level nodes it is in 
charge of are connected. The physical boder line between group 
level and field level is fuzzy. Some dumb devices are directly 
interfaced to VME: I/O-boards, but most dumb devices are in- 

Figure 1: Overall Layout of C:ont.rol System and Networks 

terraced by means of G64 crates. Groups of G64 crates, that 
interface classes of similar devices, are connected to ESRF prc- 
priatary multidrop highways that are mastered by group level 
crates. 

Networks: Apart from the multidrop highway all computer 
connections are based on the IEEE 802.3 LAN standard and 
the TCPjIP protocol suite. The network is constructed using 
50/125nm multimode graded index optic fibres for cabling, that 
will allow a later migration to FDDI. Four networking centers 
are located around the storage ring tunnel, a center comprising 
a “NODE” and a wiring “HUH”. For the active stars at the 
NODES, the “Lannet Multinet II” system was chosen for its 
ability to operate in a single chassis and support up to four 
independent backbone bus’s, III addition all backbone fibre 
optic links are run in a synchronous Ethernet mode. The wiring 
HUB is the central point for passive network components, i.e. 
the backbone optical fibrea that link all the H1JBs together in 
a circular structure around the storage ring tunnel. It also 
acts as the termination point for all star wired fibres that are 
attached to the \/ME systems. When installing the circular 
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backbmc, provision for 10 independent rings has been made, 
out of which four will be used initially. One ring functions as 
the main control segment, to which all upper layer processors 
are connect.ed. There are three dedicated process SP~~X~S that 
operate as network gateways to the other three rings. The 
latter are used as proce.$s segments to which all middle layer 
VME systems are connected. 

Coxriputers: The consoles in the c-ontrol room are III’ 
Apollo 9000 Model 720/CRX’ workstations. Their local disks 
hold the bootable image of the operating system and provide 
local swap space. File systems containing control system and 
physics applications software are remotely mounted3 from the 
process servers. About 7 to 10 consoles will be needed in the 
main control room. As process-, file-, and data-base servers the 
HP Apollo 9000 Model 750 servers were selected. Four process 
servers are equipped with 128Mbytes of RAM and 1.3GBytes 
of disk space. One central file server is equipped with a disk 
striped mass storage system providing 8.3GBytes of capacity. 
Another HP 9000/750 is running as a hot spare. All VME sys- 
tems have an identical base configuration. This comprises a 
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Motorola 68030 CPU @ 20 MHz, 4 Mbyte RAM, and on-board 
Ethernet adapter. All systems are running in a diskless config- 
uration for case of maintenance and reliability’. System start- 
up, -reboot, ;and remote crate diagnostics are accomplished by 
a dedicated VMEboard that is operated through a front panel 
FBUS connection. 

Interfacing; Most of the VME systems drive multidrop 
FBUS highways. ‘I-his FBUS is not a general purpose network 
but implements a low cost remote input,/ouput facility. It relies 
on a master-slave relationship, where a controller (VME based 
module) drives a large number5 of slave nodes. The nodes com- 
ply with the G64 standard, so that full advantage can be taken 
of existing interface boards from industry. The transmission 
medium is a flexible shielded twisted-pair cable. Physical im- 
plementation uses a noise resistant Manchester encoding with 
transformer isolation. FBUS can still be safely operated at a 
speed of lMbit/sec on distances of up to lkm and 30 nodes 
without repeater. G64 and FBUS interfacing has been used for 
control of main magnrt power supplies, beam position monitors, 
magnet interlocks, corrector magnet power supplies, and injec- 
tion/extraction elements. Other significant subsystems that in- 
clude G64 crates are the system to distribute the slow timing 
pulses, the video cross point switch, and the video multiplexors 
for fluorescent screen monitors. The rest of devices is directly 
interfaced to the VME systems; either by asynchronous serial 
lines6 or digital I/OS. 

Software: The workstations/servers run HP-UX; an 
AT&T System 1’ Rel 3.0, and BSD 4.3 compliant implemen- 
tation of the UNIX operating system. On the VME systems 
we use Microware’s OS9 realtime kernel/operating system. 
Microware’s TCP/IP Internet Support Package provides 
Berkely sockets, and SUN’s Network File System on the OS9 
systems. ThLe Man-Machine-Interface is based on the Xll- 
window system and the OSF/Motif technology. The control 
system data are stored in relational databaes which manage 
two logical parts: Resource data, and Runtime data. The im- 
plementation of the resource dat,abase uses ORACLE and its 
powerful set of development tools. Programming language is C 
and where available ANSI C. 

2 Design Phases 

PHASE 0: Phase “0” covered the period from project start 
until the beginning of storage ring commissioning. It was felt 
essential, tha.t commissioning should be started with a set of 
first generall:on applicotron programs, specifically tailored to 
this purpose, and that device interfacing and access are fully in- 
plemented for all machine parts. To reach this goal, a task shar- 
ing between the controls group and the machine theory group 
was defined. The controls group was in charge of installing the 
control syste.m hardware and implementing all device servers, 
the machine theory group concentrated on writing the appli- 
cation programs. 4 well defined, early available, and stable 
applrcation programmer’s interjace?, played a fundamental role 
in this task s,haring. Using strictly the .4PI device access inter- 
face and the X11 and Motif standards for interactive graphical 
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open connection 

NFS/RPC 1 API 
UDP ] TCP 1 UDP 

20-25ms 1 3%45ms 1 55-65ms 
close connection O.l-0.2ms 0.3-0.5ms IO-20ms 
RPC with lOObytes lo-15ms IS-20ms 15-20ms 
RPC with 8kbytes 25-35ms 55-65ms 30-40ms 
RPC with 40kbytes ] 220-250ms 1 I 

Tabk 1: Performance figures for RPC and API 

I/O, an impressive numbrr of physics applications have been 
developed in parallel with the basic control system software, 
and are available for commissioning now. The controls group’s 
major priorities during this phase were on: 
Installation of the control system hardware: A survey 
of field- and group-level hardware in terms of numbers of in- 
stalled boards and system crates is given below (note that this 
excludes four subcontracted control systems for LINAC and 
three RF transmitters): 

VME Crates 52 
VME CPU 68030 8 20MHz, 4MB RAM 53 
VME Digital 64 in/32 out TTI, 9 
VME Serial 12 RS 422 channels 104 
VME Analog 16 out, 12 bit 41 
VME Video MUX 15:l 3 
VME Image Processor 2 
VME Stepper Motor Controler 19 
VME hex prog. Delay Unit 14 
VME Timing Master 1 
VME Master Clock Divider 1 
VME Remote Diagnostic Controler 50 
VME FBUS Master Nodes 37 
G64 Crates 112 
G64 FBUS Slave Nodes 194 
G64 Digital 16 in/out ‘ITI, 161 
G64 Analog 8 in, 12 bit 190 
G64 Analog 8 out, 12 bit 12 
G64 Timing Pulse Driver, 2 ch. 74 
Stepper Motor Power Driver 64 

Development of a network transparent API: Access 
to the Device Servers is provided by three C calls. These calls 
allow the users to develop their applications in peace without 
being affected by what goes on in the Device Server software. 
Network transparency is achieved by using Remote Procedure 
CallsR 
Development and installation of device servers: A uni- 
fied model (called the deoice server model) has been developed 
to solve the problem of device access and -control. It uses a 
RPC-based Client/Server technology, which is a simple mecha- 
nism to distribute software tasks across any number of proces- 
sors. Each device is an object created at start-up which has its 
own data and behaviour. Each device has a unique name for 
identification in network name space. Devices are configured 
via resources which are stored in a database. Devices are orga- 
nized in classes, each device belonging to a single class. Classes 
are implemented in C using a technique called Objects In C. 
This technique is similar to the “widget” model from the X11 
Intrinsics Toolkit of MIT. All classes are derived from one root 
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class. The root clujs contains a generic description of the device 
and the basic client/server communication facilities. Subclasses 
inherit attributes amd methods from parent classes. Actions on 
a device are made available via commands. Commands can 
be executed locality or remotely. Applications access a device 
and its commands using the API. Currently 81 Device Classes 
have been implem’ented, covering N 80% of the total system. 
This reflects roughly: 8800 analog inputs, 7700 analog outputs, 
2Kbyte digital inputs, 1.5Kbyte digital outputs, and 2.4Mbytes 
of released (tested!) C source code. The latter numbers do not 
include the large amount of devices for beam line front ends 
and insertion devices! 
Development of the static data base: The resource 
database keeps device server resources and static data. Ex- 
amples are: start--up resources, calibrations, equipment def- 
initions, installation- & maintenance data, bookkeeping and 
archive data, etc. Presently it deals with: 

Devices defined 
Devices exported 

out of which: 

4737 
4206 

for the LINAC domain 
for the Transf. Line 1 domain 
for the Synchrotron domain 
for the Transf. Line 2 domain 
for the Storage Ring domain 
for the Front End domain 
for the Beam Port domain 

Resources defined 
out of which: 

82 
41 
457 
73 
3023 
97 
429 
27144 

for the LINAC domain 461 
for the Transf. Line 1 domain 196 
for the Synchrotron domain %711 
for the Transf. Line 2 domain 572 
for the Storage Ring domain 16186 
for the Front End domain 1099 
for the Beam Port domain 5312 
for the Device Server Classes 590 

PHASE 1: We currently enter this phase that will last the next 
two years at least During this phase the control system will 
be upgraded from its initial commissioning state to a system 
that fully supportr, alI facets of machine operation. Apart from 
small hardware amendments it is mainly development effort in 
software that will take place: 
API: Currently the API is based on a blocking (synchronous) 
RPC. The calling client waits until the call returns from the 
server before contlmuing. Eternal waits are avoided by setting 
a timeout when cellling the server. The API will be extended 
by a nonblocking (asynchronous) version which will dispatch 
the command and then return immediately. The response from 
the server will be queued and returned to the client when it is 
ready to receive it. 
Rnntime Database: Until now clients access devices through 
device servers on ,s command/response principle. Buffering or 
caching process data is the responsability of clients. We will 
add a runtime database as an independent entity to the sys- 
tem. This database is not a medium for permanent storage 
nor for tunnelling I/O requests to the device driver level. It is 
a buffering/caching front for permanent storage. Only memory 
reside&database systems can meet the demands for sufficiently 
short transaction t.imes. A prototype of the runtime database is 
operational and uses a Real-Time Dot&use Rose Management 

System’ available on HPs. This database can be used to alle- 
viate congestion problems. Multiple processes can update data 
asynchronously in the database. Clients can retrieve this infor- 
mation synchronously without blocking the process doing the 
updating. The runtime database’s prime source is a so-called 
llpdote Daemon that updates machine parameters periodically. 
Clients can issue booking requests for parameter updating at 
runtime. Streams of on-line data can be archived continously. 
Only a time window of predefined size is kept in memory by 
RTDB, the rest of the data is dumped int,o the disk-based OR- 
ACLE database. RTDB can also be used by applications as a 
means for interprocess communication. Applications dynami- 
cally dllocate “tables” of formatted data, that can then be piped 
or multiplexed to other applications. 
Security: Security is a key issue for a distributed system, and 
will be added on the device server level. The solution adopted 
here has been modelled on the Unix access control lists as de- 
scribed under ACL(5) in the Unix manual. An ACL consists of 
sets of (user.group, mode) entries associated with a file that 

specify permissions. We will extend this idea to define permis- 
sions for devices. Each entry specifies for one user-ID/group-ID 
combination a set of access permissions. The permissions a user 
must have to execute a command on a device are stored in the 
command list of the device server The set of permissions that 
we will implement for devices will be: 

Read command will only read the device 
Write command will write to the device 
Single-Write command will write but only in 

single user mode to device 
Special command can only be executed by 

priviledged user 

Single-Special command can only be excuted by 
priviledged user in single user mode 

Man-Machine Interface: Both Xl 1 and Motif, are extremeIS 
helpful but their libraries are complex to learn and to use for 
programming. User Interface Management Systems (sometimes 
called interface builders) are the tools which help the applica- 
tion programmer to design the user interface part of the ap 
plication interactively. ESRF selected a UIMS that generates 
stand-alone C code and/or a combination of Motif-compliant 
C and UIL code”. This UIMS drastically eases now the de- 
sign of Motif-based user interfaces. Synoptic drawings with 
selectable objects are scarcely supported by Motif. We there- 
fore implemented a Motif compliant widget that uses vecto- 
rial drawings generated by PHIGS”. In addition to that, pow- 
erful Xll/Motif compatible tools become available now that 
can be integrated into the MMI. At ESRF we started to use 
the spreadsheet WINGz, which has its own control language 
“HyperScript” that can be extended by user-defined C func- 
tions. Complete control applications can be written by using 
WINGz’s presentation- and button tools that create interactive 
worksheets. 
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