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Abstract

Longitudinal and transverse microwave tnstabilities Limit
beam intensities in heavy ion cooler rings. Inten-
sity thresholds and growth rates of instabilities are
mainly determined by longitudinal and transverse coupling
impedances. These impedances have been evaluated for
the ESR by analyzing beam transfer functions. Measured
longitudinal space charge impedances had values between
Z)/h =~ —1i 1000 @ and 2} /h ~ —i 1800 {2 whereas trans-
verse space charge impedances varied very strongly be-
tween 7, ~ —i 0.9 GQ/m and Z ~ —i 16 GR/m. The
impedance of 16 GQ/m corresponds to a transverse emii-
tance of ¢ = 0.05 * mm mrad and an incoherent Laslett
tune shift of AQin. = 1.5 x 10~%. For the ESR accel-
erating cavity we found a maximum real impedance of
Re(Z)/h) = 620 Q and a resonance width of about 50 kHz
[3]. No other strong coupling impedances besides the space
charge impedance (and the cavity impedance) have been
found in the region below 130 MHz. Maximum longitu-
dinal phase space densities in the ESR were as high as
5.5 times the conventional Keil-Schnell-threshold. A sim-
ilar transverse criterion was exceeded by a factor of 20.
With active feedback stabilization, even larger factors are
expected in future.

1 INTRODUCTION

In the heavy ion cooler ring ESR, very high phase space
densities can be achieved by means of ri-stacking and elec-
tron cooling. In the case of n coasting beam, collective
plasma oscillations are observed which appenr as longitu-
dinal density waves and as transverse dipole waves trav-
elling along the beam. The reason for the observed col-
lective particle behaviour is the interaction between par-
ticles via direct space charge forces or via fields induced
in surrounding structures. The strength of this mecha-
nism is described by the longitudinal and transverse cou-
pling impedances. These impedances have been evaluated
in the ESR by analyzing beam transfer functions. As ex-
pected for beams with ¢ &~ 1, longitudinal and transverse
space charge impedances dominate over other impedance
components. In contrast to the longitudinal space charge
impedance, the transverse space charge impedance is very
sensitive to variations of the ion beam radius. Measured
values differ by more than one order of magnitude whereas
longitudinal impedances of electron cooled beams do not
change very much. Transverse impedance measurements
can therefore be used to evaluate average beam diamelers
and emitlances.

2 BEAM TRANSFER FUNCTIONS

Taking into account collective effects, the longitudinal
beam transfer function is given by the expression [1]

il
= (1)
with the dieleciric function
6:1+Z||1'|0|. (2)

r|0| is the familiar transfer function for zero impedance (e

= 1) and Z| is the longitudinal coupling impedance with
its dominant space charge comaponent

tZy

2y = ~hoga

(1 + 2 In(b/a)] (3)
(Zo = 377 Q, h: harmonic number of the particle revolu-
tion frequency, b : wall chamber radius, a: beam radius).
Drawing the inverse transfer function in the complex plane
yields the stability diagram. From equations 1 and 2 we
get

1
— =5t (4)
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Hence the shift of the stability diagram gives the coupling
impedance.

3 SCHOTTKY NOISE

In the case of low phase space densities, the power density
P'(w) of the Schottky-spectrum gives directly the parti-
cle distribution function ¥(w). Taking into account again
collective effects, we get

7 (5)

For cooled low B-beams with high space charge
impedance, Schottky-spectra as well as longitudinal beam
transfer functions show the well known double peak struc-
ture (see fig. 1). The left peak corresponds to a collective
density wave travelling slower and the right peak to a wave

travelling faster than the average particle velocity.

4 LONGITUDINAL STABILITY
DIAGRAM

Figure 2 shows the stability diagram calculated from the
transfer function of figure 1 (dashed curve) and the cor-
responding diagram for zero impedance (diagram which
would be measured if the impedance were zero). In addi-
tion, also the Keil-Schnell-circle is shown. The radius of
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Figure 1: Longitudinal beam transfer function (ampli-
tude and phase) of & cooled 3°Ar'®**_beam (250 MeV/u,
1.02 mA) at the 30'" harmonic.

Longitudinal Stability Diagram
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Figure 2: Stability diagram calculated from the transfer
function shown in figure 1 (dashed curve) and correspond-

ing diagram for zero impedance.

this circle is given by the distance of the origin to the lower
boundary of the zero impedance diagram. The length of
the impedance vector is 2.3 times the radius of the Keil-
Schnell-circle. For a 2°Ne!®*.beam (153 MeV /u, 70 uA),
the Keil-Schnell-threshold was even exceeded by a factor
of 5.5,

5 LONGITUDINAL COUPLING
IMPEDANCE
The evaluation of the longitudinal coupling impedance is
not straightforward. The problem is to determine the ori-
gin of the zero impedance diagram.

For Gaussian distribution functions it can be shown (2]
that the zero impedance diagram crosses the imaginary
axes at a distance to the origin being 0.7 times the corre-
sponding distance on the real axes. {The shape of mea-
sured stability diagrams of electron cooled beams justi-
fies the assumption of a nearly Gaussian distribution func-
tion.)

A more general method is to compare the distribution
functions calculated from the beam transfer function and
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Figure 3: Real part and imaginary part of the longitudinal
coupling impedance in a frequency range up to 130 MHz.
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Figure 4: Vertical stability diagram (lower betatron side-
band) of a ¢ Kr’®*.-beam (152 MeV/u, 20 uA) at the 237

harmonic.
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from the Schottky spectrum for various test nmpedances.
The best estimate for the impedance is found if both dis-
tribution functions appproach completely.

In both cases the impedances still have to be calibrated.
This is done by calculating the zero impedance stabil-
ity diagram using the uncalibrated impedance. From the
zero impedance stability diagram, the particle distribution
function can be calculated in a straightforward way. In the
next step the distribution function and the impedance are
normalized to the beam current (measured with a beam
current transformer). Figure 3 shows the measured lon-
gitudinal coupling impedance in a frequency range up to
130 MHz. The imaginary part is constant over the en-
tire range as expected for the space charge impedance.
For broadband real impedances an upper limit of about

Re(Z))/h) < 40 Q has been found.

6 TRANSVERSE COUPLING
IMPEDANCE

The transverse coupling impedance shifts the transverse
stability diagram. Again, the space charge impedance

(6)

7y = i2,C [1 1]
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Figure 5: Longitudinal beam instability appearing at the
second harmonic of the particle revolution frequency in
time domain (upper traces) and frequency domain (lower
trace). Beam parameters: ion = 20Ne!%  energy =

153 MeV/q, ion current = 1.14 mA.

(C: ring circumference) is the largest component of the
total impedance.

Figure 4 shows the vertical stability diagram of a cooled
86 K3+ beam at the 23 harmonic. The shift due to the
impedance can again be calibrated using the particle dis-
tribution function calculated from the zero impedance sta-
bility diagram. However, this method only works properly
if nonlinear tune shifts can be neglected.

Alternatively, it is possible to evaluate the transverse
impedance from the incoherent Laslett tune shift

Z Ic

= ImZ 7
A 4xQywomyc? /e 1oL (7)

A Q ine

which is calculated from the difference of the coherent be-
tatron frequency f. and the incoherent betatron frequency
finc (see fig. 4). For the shown example, the results are

AQpne = 1.5x107%,
Im(Z;y) = -16G/m,
a = 1.1 mm,
e = a’/B =0.05x mm mrad.

These results have to be compared to a circle approxima-
tion for the transverse stability limits (transverse analogy
to the longitudinal Keil-Schnell-criterion). With a meo-
mentum spread of Ap/p = 2.2 x 107° we find that this
transverse criterion is exceeded by a factor of 20.

7 BEAM INSTABILITIES AND CURES

In the case of high phase space densities, collective waves
are travelling along the beam. They can be observed in
Schottky-spectrs and beam transfer functions (see fig. 1).
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Figure 6: Frequency spectrum of transverse oscillations of
8 2Ne'?*.beam (153 MeV/y, 3.1 mA) from 10 to 80 MHz
with feedback off (upper trace) and feedback on (lower
trace).

The beam becomes unstable if at least one of these waves
begins to grow exponentially in time.

Figure 5 shows a longitudinal beam instability at the
second harmonic of the particle revolution frequency due
to the real part of the cavity impedance. The lower part
of the picture shows a strong line at the corresponding
frequency. In time domain the instability appears as a
beam current modulation (upper traces). The instability
decreases again because large electromagnetic fields due to
the instability change the particle momentum distribution
such that beam momentum spread and Landau damping
are increased.

Whereas longitudinal microwave instabilities only limit
the muinimum momentum spread of intense cooled beams,
transverse instabilities even cause particle losses. At the
ESR, transverse dipole instabilities are damped by an ac-
tive feedback system [2].

Figure 6 shows how large coherent betatron sidebands
due to transverse beam oscillations are damped by at least
a factor of 10. Simultaneous beam current transformer
measurements showed that particle losses disappeared if
the feedback was switched on. (Besides the active feedback
system, also the cooling force of the electron cooler helps
to damp transverse as well as longitudinal instabilities [1].)
Using active feedback stabilization it should therefore be
possible to raise the currents of cooled ESR beams.
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