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We present here a non conforming finite element in IRX. This 
finite element, built on tetrahedrons, is particularly suited for 
computing cigenmodes. The main advantage of this element is that it 
preserves some structural properties of the space in which the 
solutions of the Maxwell’s equations are to be found. Numerical 
results are presented for both two-dimensional and three- 
dimensional cuses. 

Intmduction 

Because of its flexibility, the finite element methods are now 
widely popular in the scientific and technical community and are a 
basis for a number of efficient finite element codes which provide 
the numerical solution of a large number of problems arising in 
practice. The purpose of rhis paper is to provide a description of a 
non conforming finite element in [R3 for computing eigenmodes for 
resonant cavities. This element takes into account the continuity of 
the tangential components of the electric field along its edges and 
that permits the fluxes of the electric field to he continuous This 
element has been proposed by Nedelecl” and advocated by 
Bossavit”l for solving eigenvalue problems. The main advantage of 
this finite element is the possibility of approximating Maxwell’s 
equations in verifying Faraday’s law. Moreover, this choice avoids 
the parasitic modes (modes which don’t satisfy the zero divergence 
condition). These modes appear In finite-difference or in classical 
conforming I.apange’s finite element methods for instance. 

A linear matrix eigenvalu? problcrn is generated by applying 
a Galerkin type method. The numerical solution of this problem is 
used to rovide an initial RF-eigenmode for the particle code 

ip. ,.. 
PRIAML. l. T?IS application 1s at the origin of this study. 

Aed variational formulation in three dimensions 

Consider for convenience, an half cavity R completely 
surrounded by conducting walls Tc. I,et rh be the plane of 
symmetry such that &? = re u 1-h. 

The eigenmodes of this structure satisfy the time-harmonic 
Maxwell’s equations : 

curl II = ioD (I! 

am-1 E = -ioB (21 

and they are represented by the following expressions : 

E (x, y, z) e’o” 

H (x, y, z) eito’ 

where E, Ii, B and D are three-dimensional fields and w the 
pulsation. 

Bounclary conditions at the conducting surfaces Imc require 
the electric field E to bz normal : we write 

Em = 0 on conductmg walls Tc (1) 

on a plane of symmetry rh. the surface currents are symmetric : we 
have 

Ilnn = 0 on 1‘1, (4) 

We briefly discuss the m;~ln properties and the relations 
between the linear differential operators grad, curl and div. 

Let L2 (R) be the space of square integrable functions. Let 
us now define the following subspaces 

dom (gradh) = cp E Lz (n), grad cp E (1,’ (12)p. cp = 0 011 rf,) 

dom (curlh) = p E (L2 cQ)r, ICJcurl pf<-, pm = 0 on I-1,) 

dom (divt,) = I p E [L? (Qjr. {,,idiv PI’<-, p, n = 0 on I‘i,) 

We note that the following diagram : 

L,Z(R) -,;,d,’ [I,W))3 .,,i, * (I?[LLIf dl,h * L.W) 

satisfies 
Im (gradh) c dom (curlh) (5) 

i lm (CUrlh) c dorn (divhj 

We guess that particular Slructure relative to rt,, can be carried on 
1-c : 

L’t,R) -iFa;- c- (I,‘(Qf ---;“;l, ..* (Ll(R)F dl\,- * L?(Q) 

It is thr obvious thing to briny closer thrse two struc‘turc% as 1t is 
done in figure 1 : 

H 

curl,, 
D 

div!, 

div e 
B 

rut-l c 
E 

Fig. I : Tonti’s diagram for 
the time-harmonic Maxwell’s 
equations 

Note that the hlaxwell’s equations are represented vertically and the 
constitutive relations appear horizontally. 

Let us suppose R paved by tetrahedrons, and consider a 
finite element method of approximation. We have to construct finite 
dimensional subspaces %!$ of dom (gradh), ?hi of dom (CUflh) 

and %$ of dom (divh) (similarly for the w, subspaces). 
Let ui be spaned by the functions wn which are 

continuous, piecewise linear, equal to 1 at node n, to 0 at orher 
nodes. 

Let %$ (respectively %$) be spaned by the vector fields 
m, (respectively %&) such that the circulation of r*9, along edge e 
is I (and 0 along other edges), while the flux of %!$ across face f is 
1 (and 0 across other faces) : these elements are refereed in the 
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literature as mixed elements (for more details see “I and ‘21). 
In general, most of the properties of continuous problem 

don’t carry over the approximate one. Nevertheless in a mixed finite 
element approximation the relations (5) and (6) mentioned above 
hold by construction. Hence it is important to notice that 
29; c dom (gradh). 
We have the same diagram as figure 1 : 

Td”, 

B T&t 

curl 
t 

E T&t. 

t 
$9: 

Fig. 2 : discrete structure 

The approximate eigenmodes satisfy the Maxwell’s equations (1) 
and (2). The error of approximation comes from the constitutive 
relations D = EE and B = pII which cannot be guaranteed because 
the discrete spaces w! and u? are distinct 01 

For our purpose we keep E in the spaceu 2, therefore 
B = c”r’ E -G- belongs to 29:. 

As H = l- B, we can express the relation (2) in the following weak 
foml: lr 

- 1 curl (curl E).p dx ~~ io 
iw 

eE.p dx = 0 for p E 29: 

Using Green’s fomlula over R we obtain 

I 
curl E.curl pdx -. O’ER 

1 

E.p dx = 0 v p E Q: 
c2 n 

Now we consider the following approximate problem : 

Find a pair (E, k) E 29: x C? solution of 

I 

(7) 
curl E curl p dx = k* E.p dx Y p E 1/9: 

0 

where k is the wavenumber k = w/c # 0 (c = light velocity) 

Mixed finite element 

The geometrical domain R over which the finite element 

method is applied is subdivided into tetrahedron. In this section, we 

present a mixed element, first introduced by Nedelecl”, which is 

conforming in the space H (cur1.R) = {p E (L’(R)?. ]Acurl p1’<-/ 

and exactly preserves the continuity of the tangential components of 

the electric field .These elements permit a first order interpolation of 

the field in the interior of the tetrahedrons in which they apply. 

Inside each tetrahedron T, the field E is interpolated by the function 

al + I322 - PXY 

Eh =*a? + pjx - plz 

a3 f Ptu - P2x 

The degrees of freedom are the values of the taugentlal 
component 41 = E.t at the midpoints of the sides of JT, where 1 is 
an unit tangent along the edge aT of T. 

4 ___- ----- 
Fig. 3 : degrees of 
freedom in a tetrahedron 

The electric field is expanded as Eh = E1$,Ni (x, y, z) where N,‘s 

are basis polynomials such that &,N; t, = 6it and @, are 

unknown expansion coefficients. 

In the finite element method, this relation is properly 
combined to yield a global linear eigenvalue problem; the finer the 
mesh is, the better the approximation of vector field will h 

* 
In each tetrahedron curl Eh = :,6,/V (where V is the 

volume of the element) is constant and div En = 0. 

Remark 

Let us start from the eigenvalue problem in terms of E : 

curl (curl E) = k2E 

if k # 0 then we have div E = 0. 

Presently, it is possible to construct a tot of equivalent 
formulations for solving our eigenvalue problem. For example, the 
classical conforming Lagrange’s finite element method seems to be 
convenient tool. 

However, the disadvantage of this formulation is in its 
limitation by parasitic modes : fields we obtain don’t verify the zero 
divergence condition. 

On the other hand, no problem exists with “mixed” element 
consider E E mi such that 

(curl E, curl p) = k2 (E, p) V p E wt 

Let Q be a test function suitably chosen such that 
p = grad cp E 29 i (this exists because the operator grad maps 
the finite-dimensional subspace %&z onto w L). We obtain 
(E, grad 9) = - (div E, cp) = 0 v (3 i.e. the equation div E = 0 is 
preserved. 

Results for a two-dimensional contiaurttion 

In order to investigate the usefulness of our clement, we 
have written a code for the electric field in an axisymmetrical 
configuration. Only TM eigenmodes are computed in which 
C%E,,B~) occur. 

The method was apphed in order to solve the eigenvalue 
problem curl curl E = k2E in a homogeneous medium On the axis, 
we have Bq = 0. As in our case Maxwell’s equations yield to 
curl E = -ioB, we finally obtain the boundary condition on the 
axe : curl E = 0. 

The eigenvalue equation was solved by using a subspaces 
iteration method (Fig. 1, 2 and 3). 
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Results for a three-dimensional confteuration 

At a first test of our three-dimensional code, we have applied 
it to the case of a circular cylindrical resonant cavity. The boundary 
condition EAn = 0 was used on conducting walls (Fig. 4, 5, 6 
and 7). 

Conclusion 

WC have illustrated that the use of the mixed finite element 
method for computing electromagnettc fields is very well suited. 
The advantage in the case of Maxwell’s equations is that mixed 
finite element method can be interpreted by means of physical laws. 

Our developments are achieved by using the Modulef 
facilities’41 and all computations have been carried out on a Vax 
X600 computer. 
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Fig. 1 : Finite element mesh of 
an nxisymmetrical resonant 
cavity (First cell of LAL RF- 
Gun) 

Fig. 2 : eigenmode of the RF 
cavity at 3 GHz frequency : 
the electric field vector 

Fig. 3 : iso-Bq3 lines multiplied 
by the radius 
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Fig. 4 : Half cylindrical cavity Fig 5 : iso-I-, lines for Tblgl(~ 
finite element mesh illG& 
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Fig. h : Cross section of the 1’1g. 7 : Cross section of the 
iso-E, lines for TMoto mode k-E, lines for TM?10 mode 
with respect to the x = 0 with respect to the 2 = 0.5 
plane plane 


