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Abstract

A 2 1/2 dimensional, relativistic particle simulation code is
described. A short review of the used mixed finite element method
is given. The treatment of the driving terms (charge and current
densities), initial, boundary conditions are exposed. Graphical
results are shown.

Introduction

Future accelerators design needs numerical simulations
taking into account the totality of the electromagnetic phenomena
arising wher ultrarelativistic bunches move in electromagnetic
devices. These computations can be achieved only by somewhat
sophisticated programs solving the complete Maxwell's and
Newton-Lorentz equations by particle methods (i.e. coupling
Eulerian and Lagrangian approaches).

We present here such a 2 1/2 particle code, PRIAM,
developed at LAL (Orsay) and dedicated to the design of accelerator
electromagnetic devices (RF-guns, accelerating cavities etc.). In
PRIAM the particular choice is to use a "mixed” finite element
method in solving the Maxwell's equations. This formulation,
although quite unusual, is very well suited for the electromagnetic
problem : the discrete unknowns related to the electric field E are
not the nodal values but the circulations of E along edges of the
elements (triangles) whereas the unknowns related to the magnetic
field are values of B constant on each triangle, in such a manner
that some fundamental structural properties of the Maxwell's
equations are preserved.

After a short review of the method (space and time
discretization) some characteristics and facilities of the program will
be described.

Aim of the program

The aim of the program is to simulate the dynamics of
charged particles within time varying electromagnetic fields, in a self
consistent manner. An axisymmetric geometry is assumed.

From symmetry a TM-mode has to be considered : the
unknown functions are an electric vector field E = (E,, Ep) together
with a scalar field Bg (azimuthal component). The Maxwell's
equations are in this case :

oD
curlHy=j+— @)
¢ =J dt
curl E =~ 9By (2)
at
divD=p 3
+ initial and boundary conditions

E, D, By, Hy being bounded by the constitutive relations : D = eE ;
By = uHg.

The boundary condition is Ean = 0 on conducting walls (n
is a normal unit vector). On the axis D.n = 0 and Hg = 0. On "open

boundaries” some special (non reflecting) conditions have to be
constructed.

The operator curl w = (i g; (rw), — aag ) operates from a

scalar function to a vector one. The operator curl operates from a

. d ap,
vector function to a scalar one - curl p = % - -«35‘ .

The driving terms j and p (current and charge densities) have
to be calculated from Newton-Lorentz equation :

o) =S (E + PrB) @

In the dynamic calculations we consider the six components E, B in
order to be able to take into account superimposed fields (focusing
magnetic field etc.)

{¢c = light velocity ; ﬁ = (B,. B =% with v = particle velocity |

Yyl = \j 1~ﬁ3 e, m charge and mass of the particle)

Discretization of the Maxwell's equations

Space discretization

Let us consider a bounded computational domain Q with a
boundary I' = [yul .0l
(I« axis ; I'¢ - conducting boundury ; I'y open boundary)
The vector E, solution of the Maxwell's equations, belongs to the
following functional space :

& r‘p:f [p§3<oo,j Leur! p| 2 < oo, pan = 0 on I"L.l
\ Q <2 '

The scalar By belongs to the following functional space :

sa:{w;szw}

curl operates from & to %.

As well-known the quantity EAn is continuous at interfaces
between different media (it is the case also for B.n, but it is
obviously true here from symmetry).

In order to use a finite element method we can write a
variational formulation of (1). Let p be any vector of &, after
multiplving both sides by p, integrating over Q and applying the
Green's formula we get the following problem :

find Ee &, Bye B such that for any p:

J E%E-P rdrdz:J & B curl p rdrdz - { jprdrdz + J &Bwp/\n rdy (5
t
“ @ /42 o

with (2) and (3)

(in the following we will consider € = €¢ ; }l = Ho)
The boundary integral is limited to the open boundary : indeed
pan = 0 on ¢ by definition of & and on the axis r = 0.

There exist finite element spaces having the same structural
properties as & and B and allowing one to achieve the space
discretization of the above variational formulation with so called
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"mixed finite elements”. For PRIAM we used a "Nedelec"l!]
triangular element (fig 1) : the electric field E is interpolated in each
triangle by a vector with linear polynomial components :

E = C1{(t) Ni(z, r) + C2(t) Na(z, r) +C3(t) Na(z. 1)

the Nj's being the linear basis functions and the degrees of freedom
C; (i.e. discrete unknowns of the formulation) being the circulations
(tangential fluxes) of E along the edge n®t of the triangle. The
coefficients of Nj's, which are of the form (¢t; - Bir, v; - Bjz) are
calculated in ensuring the 9 conditions

Nianjdy =8 (8 =0ifi=j, 1ifi=.

edge )

EJ

E.Z,

Fig. 1 : space discretization
This leads to an expression for E of the form : E = (a1-Br,az+pz)
o, 002, B being different on each triangle. In addition :

Ci+Ca+Cj

curl E = 28 = S < on each triangle (S

triangle)

: area of the

The magnetic azimuthal field is interpolated by a constant
function on each triangle.

curl E lies precisely in the functional space in which By is
interpolated. So the discretized form of the eq. (2) will be the strict
application of the Faraday's law to the contour of the triangle :
C1+Cop+Ca=-— --(—v—a“?’»l That is why, although none of the
components Ez. Er, By is continuous passing from a friangle to
another, these finite elements are nevertheless very performing,
ensuring the continuity of EAn at interfaces.

Putting the linear expressions of E and B¢ in (5) and taking
one after another p = Nj we get a linear system (o be solved with
respect to the unknowns Cj,

Time discretization.

A "leap frog” time scheme is used : given (curl E)" 172 Bl
at the time step n, the time step n + 1 consists in the following :

+ inversion of the above linear system giving the time
derivatives Cy, C'yy, C03y, on each triangle

i . ) " Cn + Cﬂ + Cn
o feurl B+ 12 = curl By 7 ¢ Ap LD s e K

« B = B0 - At (curl Eyn+ 172
» smoocthing field values and solving Newton-Lorentz

equation
« calculating new p and j as new driving terms starting from
new particles positions and velocities

ntnuit uation

~ The previous scheme treats Maxwell's equations (1) and (2).
Taking into account eq. (3) is equivalent to ensure a charge

- . .0
continuity equation : div j + D[l) = (.

Let E be the electric field as previously calculated ; a correction is
searched under the form!2 E* = - grad @ such that :

Ab =P _4ivE

Lo

this equation is solved by a classical P1-Lagrange finite element
method.

Newton-Lorentz equation : macroparticles

The particles are represented as "macroparticles” carrying
macroscopic charges qp, which are assumed to be Dirac distribu-
tions :

p=Zqpsr-rp)

j=§Qp8(r"rp)CBp

putting these expressions into the integrals of the right hand side of
(5), we get the driving term of the linear system. The macroparticles
are moved through the Newton-Lorentz equation. The latter is
solved by a Boris-Buneman algorithm. For further information see,
for cxamplcmA

Boundary conditions

On conducting walls Ean = 0 ; it means that the degrees of
freedom (related to E) are zero on these boundaries. This boundary
condition is taken into account in dropping the corresponding nodes
out of the linear system.

Concerning the open boundaries one has to express, the
outgoing waves are not reflected. In our finite element formulation
the most suited absorbing condition is ¢Bg = nAE ; it can be put
directly in the boundary integral of (5). This condition is absorbing
for the outgoing waves at the first order with respect o the angle of
incidence,

PRIAM allows one to take into account emitting boundaries
(cathodes) : during the emitting phase a slice of macroparticles is
emitted at each time step. The charge carried by each particle is
weighted in order to get a constant or gaussian density (other shapes
can be easily programmed).

Initial conditions

For numerical accuracy considerations it is much better to
compute the initial (for example RF fields) or superimposed
(focusing magnetic) fields on the same mesh, and with the same
mixed finite element formulation : in this way the adequacy
described above between discrete functional spaces and continuous
spaces of the Maxwell's equations is preserved. Therefore a module
has been developed for computing eigenmodes of resonant
cavities!*l. A magnetostatic module will be soon available.
Electrostatic fields can be taken into account directly by PRIAM.

Moreover any superimposed field can be programmed by the
user.

silities of the program

The program is being developed using MODULEF!®:

facilities, in particular versatile mesh generators. Once the mesh has
been provided, the user's data (boundaries, charge, pulse length,
initial conditions etc.) are stored through a preprocessor and can be
modified and reprocessed in a further run. A post processor allows



one to analyze the outputs and to provide a set of graphics.

Figures (2, 3, 4, 5) show some graphical outputs related to
the design of a LAL-RF gunl(’]. A work made at CEA (Bruyeres-le-
Chate!”! compares the results of different programs in designing
the ELSA project. This work and also results obtained at CERN!3!
shows that PRIAM is in good agreement with programs using other
approaches.

PRIAM is programmed in FORTRAN-77 under the norm
JKS for the graphical modules.

The mixed finite element approach offers the advantage of
combining the now well-known facilities of the usual finite element
methods with a close approximation of the Maxwell's equations
strictly preserving the laws of electromagnetism (Faraday's in our
case) on each element of discretization. The formulation is very
general and can be easily carried out in 3 dimensions.
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Fig. 2 : LAL-RF Gun simulation
(a) mesh
{(b) behaviour of the single bunch

Fig. 3 : LAL-RF Gun simulation : (r, r') phase space at the exit of
the gun
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Fig. 4 : LAL-RF Gun simulation : z,E phase space at the exit of

the gun

Fig. 5 : LAL-RF Gun simulation : z-histogram at the exit of the

gun



