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Abstrdct 

A 2 l/2 dimensional, relativistic particle simulation code is 
described. A short review of the used mixed finite element method 
is given. The treatment of the driving terms (charge and current 
densities), initial, boundary conditions are exposed. Graphical 
results are shown. 

Intmduction 

Future accelerators design needs numerical simulations 
taking into account rhe totality of the electromagnetic phenomena 
arising wher. ultrarelativistic bunches move in electromagnetic 
devices. These computations can be achieved only by somewhat 
sophisticated programs solving the complete Maxwell’s and 
Newton-Lorentz equations by particle methods (i.e. coupling 
Eulerian and Lagranginn approaches). 

We present here such a 2 l/2 particle code, PRlAM, 
developed at LAI, (Orsay) and dedicated to the design of accelerator 
electromagnetic devices (RF-guns, accelerating cavities etc.). In 
PRIAM the particular choice is to use a “mixed” finite element 
method in solving the Maxwell’s equations. This formulation. 
although quire unusual, is very well suited for the electromagnetic 
problem : the discrete unknowns related to the electric field E are 
not the nodal values but the circulations of E along edges of the 
elements (triangles) whereas the unknowns related to rhe magnetic 
field are values of BV constant on each triangle, in such a manner 
that some fundamental structural properties 01‘ the Malrwell’\ 
equations are preserved. 

After a short review of the method (space and time 
discrelization) some ch‘aracteristics and facilities of the program will 
be described 

aof the m-oflr;Lm 

The aim of the program is to simulate the dynamics of 
charged particles within time varying electromagnetic fields, in a self 
consistent manner. An axisymmetric geometry is assumed. 

From symmetry a TM-mode has to be considered : the 
unknown functions are an electric vector field E = I&, IZr) together 
with a scalar field Bq (azimuthal component). The Maxwell’s 
equations are in this case : 

aD 
curlHq=j+-- 

at 

cur\E=-Gh at 

(1) 

(2) 

div D = p (3) 

+ initial ond Lkxmabry conditions 

E, D, B* H+, being bounded by the constitutive relations : 11 = EE ; 
BV = p’Hq 

The boundary condition is EAn = 0 on conducting walls (n 
is a normal unir vector). On the axis D.n = 0 and H, = 0. On “open 

boundaries” some special (non reflecting) conditions have to be 
constructed. 

The operator curl w = (+ g (rw), - ?J: ) operates from a 

scalar function to a vector one. The operator curl operates from a 

vector function to a scalar one : curl p = az L?& ._ $P;L 

The driving terms j and p (current and charge densities) hare 
10 1~ calculated from Newton-Lorentz equation : 

$$+)=&cE++H) 

In the dynamic calculations we consider the six components E. B in 
order to be able to take into accounl superimposed fields (focusing 
magnetic field etc.) 

(c = light vcloc~ty ; p = (PI, Br) = Ic wirh \’ = particle velocity : 

Y ‘=&-pz; e, m charge and mass of the particle) 

Discretization of the Maxwell’s euuations 

QAce disiretizatioq 

I,et us consider a hounded computational domaln R with .I 
boundary r = I‘awrc~I-(7 
(I., : axis ; I‘, : conducting bound;lry , I‘,, open bounduy) 
The vector E, solution of the Maxwell’s equations, belongs to the 
following functional space : 

GA,: jp/‘<-, 
I 1 

‘curl pl z < m, phn = 0 on I‘, I 

I n I> i 

The scalar BV &longs to the following functional space : 

$=j W, 
I 

Vd?<= \ 
fl 1 

curl operates from e to 53. 
As well-known the quantity EAn is continuous at interfaces 

between different media (it is the case also for B.n, but ir is 
obviously true here from symmeny). 

In order 10 use a finite element method we can write a 
variational formulation of (1). Let p be any vector of &, after 
multiplying both sides by p. integrating over R and applying the 
Green’s formula we get the following problem : 

find EE &, BVc % such thatfor any p. 

wirh (2) and (.i) 

(in the following we will consider E = k ; p = ho) 
The boundary integral is limited lo the open boundary : indeed 
pAn = 0 on I-C by definition of G and on the axis r = 0 

There exist finite element spaces having the same structural 
properties as & and 9 and allowing one fo achieve the space 
discretization of the above variational formulation with so called 
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“mixed finite elements”. For PRIAM we used a “Nedelec”“’ 
triangular element (iig I) : the electric field E is interpolated in each 
triangle by a vector with linear polynomial components : 

F, = Cl(t) Nl(z, r) + C?(r) Nl(z, r) +Ci(t) N3(7., r) 

the N,‘s being the linear basis functions and the dcgrecs of freedom 
C, (i.e. discrete unknowns of the formulation) being the circulations 
(tangential fluxes) of E along the edge noi of the triangle. The 
coefficients of N,‘s, which are of the form (c(, - Blr, yI p,z) are 
calculated in ensuring the 9 conditions 

I 
N,A~, dy = 6,, (6,, = 0 if i # j, 1 if i = j\. 

cclgc , 

Fig. 1 : space discretization 

This leads to an expression for E of the form : E = (al-pr.a2+pz) ; 
at, a~. p being different on each triangle. In addition : 

curl E = 28 =: C] +c2+cy 
s ~- on each triangle (S : area of the 

triangle) 

The magnetic azimuthal field is interpolated by a constant 
function on each tmmgle. 

curl E lies precihely in the functional space in which Bq is 
lnterpol;ued. So the discretized form of the rq. (2) will be the strict 
application of the Faradav’s law to the contour of the triangle : 
Ct + C2 + C! = ~~ a!_“;;fs-!- That is why, although none of the 
components E,, E,, Bq 15 continuous passing from B triangle to 
another, these finite elements are nevertheless very performing. 
ensuring the con:inuity of Enn at interfaces. 

Putting the linear expressions of E and Bq in 15) and taking 
ortt’ after another p = K, we get a linear ~ysrrm to be solved with 
respect to the unknowns C,. 

Time discretizatjon 

A “leap frog” time scheme is used : given (curl E)“- “2 H”cp 
at the time step II, the time step n + I consists in the following : 

l inversion of the above linear system giving the tilnc 

derivatives C?t(, (5, C?Q, on each triangle 

. (curl I<)n + IIt? = (curl E)” 1;: + ,‘~.m:mti .JL C” + C’ + C”y, 
s 

. B”+l cF = B” LQ (curl Ejn + I!? 

l smoothing field values and solving Newton-Lorentz 

equation 
- calculating new p and j as new driving terms starting from 

new particles positions and velocities 

Continuitv eau3& 

The previous scheme treats Maxwell’s equations (1) and (2). 
Taking into account eq. (3) is equivalent to ensure a charge 

continuity equation : div j +-z- = 0. 

Let E be the electric field as previously calculated ; a correction is 
searched under the form’*’ E’ = grad CD such that : 

.\Q = !L - (ii\, E 
r0 

this equation is solved by a cl:i\siral PI -I.ngrnngc finite element 
method. 

Newton-Lorentz equation : mncrop.articles 

The particles are represented as “rnacrop;lrticles” carrying 
macroscopic charges qp, which are assumed to be Dirac distribu- 
tions : 

11 = Zqpfj(r -- rp) 
P 

putting these expressions into the integrals of the right hand side of 
(S), we get the driving tenn of the linear system. The macroparticles 
are moved through the Newton-Lorentz equation. The latter is 
solved by a Boris-Buneman algorithm. For further information see, 
for example13’. 

Boundarv conditions 

On conducting walls Em = 0 ; it means that the degrees of 
freedom (related to Ej are zero on these boundaries. This boundar): 
condition is taken into account in dropping the corresponding nodes 
out of the linear system. 

Concernmg the open boundaries one has to express, the 
outgoing waves are not reflected. In our finite element formulation 
the most suited absorbing condition is cBV = nAE ; it can be put 
directly in the boundary integral of (5). This condition is absorbing 
for the outgoing waves at the firbt order with respect IO the ang!e 01 

Incidence. 
PRIAM allows one ta take into account ernttttng boundarie\ 

(cathodes) : during the emitting phase a slice of macroparticles is 
emitted at each time strp. The charge carried by each particle i\ 
weighted in order to get a constant or gaussinn density (other shapes 
can he easily programmed). 

Initial conditions 

For numerical accuracy considerations it is much better to 
compute the initial (for example RF fields) or buperimposed 
(focusing magnetic) fields on the same mesh, and with the same 
mixed finite element formulation : in this way the adequacy 
described above between discrete functional spaces and continuous 
spaces of the Maxwell’s equations is preserved. Therefore a module 
has been developed for computing eigenmodes of resonant 
cavities14’. A magnetostatic module will be soon available. 
Electrostatic fields can be taken into account directly by PRIAM. 

Moreover any superimposed field can be programmed by the 
user. 

bilities of the Drosx;\m. Ournuts 

The program is being developed using MODULEF15: 
facilities, in particular versatile mesh generators. Once the mesh has 
been provided, the user’s data (boundaries, charge, pulse length. 
initial conditions etc.) are stored through a preprocessor and can be 
modified and reprocessed in a further run. A post processor allows 



one to rrnal~ XC the outputs and to provide a set of graphics. 
Figure’ (2, 3, 4. 5) show some graphical outputs related to 

he desi n of a LALRF gu8”. 
Ch:l& 

A work made at CEA (Bruy&es-le- 
conq~res the results of different progrorns in designing 

the EI.SA project. Thic work and :~Iso results obtained at CEKN18’ 
shows that PRIAM i\ in gocd agreement with progr:tn:s using other 
iIpjJrOXhC5. 

PRIA\q is programmed in FORTRAN-77 under the norm 
GKS for the graphical modules 

Conclusion 

The mIxed finite element approach offers the advantage of 
combining the now well-known facilities of the usual finite element 
methods v,ith a close approximation of the Maxwell’s equation.\ 
strictly preserving the laws of electrorllagnetisln (Faraday’s in out- 
case) on each elemeni of discretization. The fomlulation 
general and can be easily carried out in 7 dimensions. 

-- 
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Fig. 2 : LAL-RF Gun simulation 
I a) mesh 

it,) behaviour of the single hunch 

,.. ,, 

., Y. 

.,.‘ . 

.u /, ., ill/ ., 

. : ‘J .V”.Y i, 

Fig. 3 : LAL-RF Gun simulation : (r, r’) phase space at the exit of 
h2 gun 
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4 : LAL-RI; Gun simulation : 1.1 phase splice at the exit of 
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1:1g. 5 : LAI.-RF Gun simulation : z--hlstogam at the exit of the 
gun 


