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NON-MATRIX ANALYSIS OF AC PROBLEMS WITH SPACE CHARGE 
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We describe an integration method for AG problems with space and similarly for B and bt. In this paper we simplify by assuming that 
charge giving simple analytic results for transportable current, beam A(z) = B(z): the beam is balanced in the x and y directions, although 
ripple, and phase advances. Space charge does not need to be modeled not necessarily matched. (The unbalanced case A(z) f B(z) is treated 
by discrete impulses nor the focusing force represented by constant in [12].) To first order, at(z) = -b,(z), so that a + b = 2A and the 
steps. Our approximate results are easy to use and sufliciently accurate coupling between Eqs, (1) and (2) is eliminated: 
for most design purposes. 

Introduction a ” = -K(z)a + i?+-$. 
33 

(5) 

Thirty-two vears ago Courant and Snyder published their famous 
paper on alternating-gradient (AG) focusing of particle beams without Using Eq. (3) and expanding the E?/a3 term, w’e have 
space charge (11. Their powerful matrix approach, however, requires 
the focusing forces to be represented by step functions and is not easy 
to apply to space charge dominated problems. 

A different way to treat regularly fluctuating forces was discussed 
i\“+ a,” = -K(z)A - K(z)a, + + - 3p + hp’ -..,) + $, (6) 

A3 
briefly in [l] and [2]. It was originally introduced by Kapitza 131, 
developed mathematically by Bogolyubov [4], and applied to plasma where we define the ripple ratio 
physics problems by Morozov and Solov’ev [S]. This method treats 
multtple time scales by analyzing fast and slow variations separately. 
For example, it is used to analyze the motion of a particle in a confin- 

p(z) = F. (7) 

ing magnetic field where fast gyration and slow guiding-center The peak ripple ratio is not necessarily very small--for example, the 
motions occur. Although the method has mostly been ignored in AG case amax = 2am’” implies p”‘“’ = l/3. However, the series in Eq. (6) 
applications, we show that it is quite useful in treating continuous AC; converges fairly rapidly for pmax < 113; we shall see that it usually suf- 
focusing forces and space charge. fices to keep terms up to p2 in Eq. (6). 

In the following sections we treat three topics: (I) We consider the 
envelope equation for a K-V beam in a general quadrupole lattice, Fart Differential Eqwtion and its Sohttion 
getting explicit results for beam radius. ripple, and phase advances in 
terms of the quadrupole parameters and the beam perveance and The terms with nonzero average m Eq. (6) will be treated in the 
emittance. (II) We then specialize to a hard-edge FODO lattice. with next subsection: the fluctuating terms that will drop out when averaged 
results that agree closely with exact results over a wide range of phase are 
advances o. and o. Our formulas are generally simpler and easier to 
applv than those obtained from the matrix formulation 161, and are “1 

II=- 7 E= Ah h(zj - 3a,Aj + ..’ (8) 
neariv as accurate. In some cases (discussed elsewhere) our results 
improve on those obtained from the averaging scheme used in Refs. 
(71 and [X] (III) We examine ESQ.focused acceleration, which i\ We assume that the constant part of the force is 0’; higher order of 
currently of interest in fusion applications [9 - I I ]. Additional topics smallness than the fluctuating force and neglect the E- term to simplify 
are discussed in ] I?]. our equations; higher order effects are considered in a consistent way 

in ] 131. In Eq. (8) we have written 
Balanced Beam in Svmmetric Ouadrupoles 

K(z) = K h(z), (9) 
Envehpe Eqrratimsfor K-C’ Distribution 

where K is the maximum value of K(z), and h(z) ranges between +I 
A non-relativistic beam with a K-V distribution transported by a and -1 in a symmetric system. We start integrating with z = 0 at the 

series of linear symmetric quadrupoles is described by the paraxial midpoint of the region where h(z) is positive so that a,‘(O) = 0 and 
envelope equattons a,(O) = almaX. In a symmetric quadrupole cell of length 2L, a, will 

y” = -K(z)a +’ +g 
pass through 0 at z = L/2, so that 

a3 
(1) 

max 
2Q b” = +K(z) b + 5 + ~ 

aI = AK jVzdzj;h(z.)dz’. (I()) 
0 

a+b (2) 

where a and b are the beam radii, K(z) represents the quadrupole gm- 
(We assume that A(z) changes slowly and take A outside the integral 

dient, E is the emittance (we assume that E, = E y ), and Q is the 
sign.) Tne ripple ratio can be written as 

(nonrelativisitic) petveance, Q = (4rt~,)-‘(m/2q)‘nI Vm3/*, with I the 
beam current and qV the beam energy. The form of K(z) is arbitrary 31 -= 
except for the assumption of symmetry, implying (K(z)) = 0, aver- A 

p(z) = K jmdz’J;h(z”)dz”. (11) 
% 

aged over a quadrupole cell. 

Splitting and Expansion of Terms for Balanced Bewn 
This is the explicit solution for the fast part of Eq. (5). The ratio of 
maximum to mean envelope radius is 

We split a and b into slow and fast parts: 

b = B(z) + b,(z), a = A(7) + a,(z), 

where 
A = (a), 81 = a-A, 

a m3x mm 

(3) 
__ =I+a+ (12) 

A 
= 1 + p”‘“X 

(4) Slow Differential Equurion 

*‘Ills work was supporteed hy the tJ.S. Dcpartmrnt of Energy under Conrracl No. 
We now average Eq. (6), where, by definition, (at ) = 0 and 

(K(z)) = 0: 
DE-ACOi-:hSFOO(WX 



A” = L + $ - (alK(z)) 
A3 
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Q trmsp = (Jo2 ($q(l + .7(g))-? - s- (23 -2 A,2 
.$- + 2 + AK2( h&lz’j,,hdz”) Often, the maximum beam radius is specitied; if so, one may use Eq. = (12) to replace A, by amax in Eq. (22). 

Although the basic results, Eqs. (12). (17), (20). (21) and (22) 

2L.L AK’{[~hdz’]*), 
for amax/( A,, a,, (J and Qu,, 

R 
, are simpler in form than equiv- 

= 
A3 A 

(13) alent results obtamed by matrix met ods, we fmd that they are reason- 
ably accurate for phase advances up to about 100 degrees. 

where we changed the order of integration and used (h) = 0. We also 
inucduced - 

E 2 = E”( I + 6(p”)) * 

with p given by Eq. (11). We now define 

K eff = K2 ([fhdz’]*), 

so that K,t, is a constant, dependent only on the lattice parameters, 
and write E;L 

A”=-K,ttA+-+%. 
A3 

(15) 

This is similar to Eq, (5), with A replacing a. K,tE replacing K(z), 
andE, replacing E We correct a popular misconcepuon by notmg that 
K,rr is proportional to the mean square integral of the force. not the 
m”e’a’n square force. 

Equation (16) resembles the result from Reiser’s method 171, 181, 
except that: (1) K,tt is calculated from integrals rather than particle 
advance matrices, so that it is unnecessary to divide the force K(z) into 
a series of constant steps, and (2) the E term is corrected for ripple 
according to Eq. (14), greatly improving the accumcy when the phase 
advance is large. (Accuracy can IX further improved by including all 
second order corrections, but with loss of simplicity [ 131.) 

Fig. I. Nonnalizcd clcctric licld grddicnt h(z) for ham edge FODO model. 
The cell lcnpth is 2L The occupancy factor n is the mtio Lquacj/L 

Solurion of Fast Equarion 

In cases where the fast envelope ripple is of no particular interest, 
the quadrupole problem is replaced by a much simpler problem: a 
round beam in a constant focusing channel. In cases where the ripple 
is of interest. we have the explicit solution, Eq. ( I I). 

For the FODO cell. we have from Eqs. (I I ) and ( 12) 

a mm 
A = I +jo~,z@.m~ = I + ; q(2 ,,)I;. (23) 

Matdzeti Ikczm Rndizr.r czd hlisrn~ztclzetf Ralr~rzc~etf &urn 

Setting A” equal to zero gives the condition for a matched beam, 

E*2 
Q = AaKCrr - - 

A,2 

whcrc q is the occupancy factor (see I?g. 1). Table 1 shows that this 
gives good results for cases with reasonably large beam ripple. 

(17) 
Slow Equnrion, Phase Advance, and Tnznsportuble Czcrrrnr 

For the FODO model we obtain from Eq. (15) 

Examole: Hard Edge FODO Lattice 

Although the above quantities are easily evaluated for realistic 
models without discontinuities in K(z) [ 121, we illustrate our results 
with a hard edge FODO lattice in order to compare with published 
results [6] - [Xl which use this lattice model. The function h(z) for 
this lattice is shown in Fig. 1. 

A 

If Q is a given quantity and Q > 0, Eq. (17) is easily solved for A:. 
The balanced oscillation mode, when linearized, obeys K cff = +1*(3-.2n)K~L*. (2.4) 

6.4” = - (2Kett + 2%) 6A; 

thus, the wave number for linearized envelope oscillations is 

(1x1 To calculate E, we use Eq. (14) and find 

(25) 

E*2 
k 2 = 2K,,, + 2-. 

A 
4 

(lo) Because of the assumed FODO symmetry, it is sufficient to calculate 
the above averages over the range 0 to L/2. 

Reference [ 121 discusses the unbalanced oscillation mode. The phase advance a,, from Eq. (2 I j. is 

Ph~.se Advunce and Transportuhle Current 
o* = f&-2n)K’L3(1 t 3(p2)), 0 (26) 

The approximate phase advances o and oo, with and without 
space charge, are derived in [ 121: 

with (p2) given by Eq. (25). Table 1 shows that Eq. (26) is accurate 

;; (1 + 3(P”))> 
enough for most design purposes. In [ 121 this equation is rewritten, 

0 = ?L- (20) after dropping higher terms, as 

o. = 2LK,,‘“( I + 3(P2)). 
1 -cosao = ;n2(3-2n)K2 L” , (27) 

the same as the result quoted in 16); this is good for oo up to 140 
For the transportable current at a chosen a, limit and given beam degrees, A similar approach could be used, for large cio, with lattice 

radius, we use Eqs. (17) and (21) to get models that are more realistic than FODO. 
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TABLE 1 

Comparison of our results with exact solutions of Eqs. (I)-(?) 
for FODO (Fig. 1) with rl = 0.65. 

4~ L Q E h,,, amax amax o. a0 (3 u 

given given given exact exact approx exact Eq (26) exact E&(20) 

1.3997 .00000 .O?lW 0.815 1.015 l.o(R 57.2 58.8 57.2 5x.x 

1.3997 .0(X)73 .03100 0.914 I.132 1.131 57.2 5x.x 45 3 46.8 

1.3997 .oTK)73 .00775 0.617 0.761 0.761 ~57.2 5X.X 24.7 2.5.9 

1.3907 .0(x)73 .oWW 0.557 0.684 0.683 57.2 .5X.X 1.5 16 

1.6162 .0(xXx) .OlO96 0.430 O.S8? 0.563 79.1 82.3 79.1 82.3 

1.6162 .CU205 .OlG% 0.738 0.973 0.969 79.1 X2.3 25.6 27.X 

1.6162 .WS81 .OlSSO 1.190 1.567 IShI 79.1 82.3 13.9 15.1 

Note: The approximate a max is from Eq (23). using A from Eq. (17). 
The exact solutions for ~a,,,, am;F\, and o were obtamed)numerically. 

The transportable current may be found from Eq. (17) or (22) 
using the above expressions for oo and E,, 

The depressed tune cr is given by Eq. (20) using Eq. (25). Table I 
shows that the results agree with the exact values within one or two 
degrees. If still greater accuracy were needed, an equation analogous 
to Eq. (27) might be used for 0. Or, one could include higher order 
corrections [ 121, but the expressions would not be as easy to use. 

ES&Focused Acceleration 

For a nonrelativistic beam with electrostatic focusing, K is 

where U is the quadrupoie voltage. a u is the quadrupole radius, and 
qV is the beam energy in electron volts. Therefore 

K,[f = gi’l)l.‘$ a,;J, (29, 

where, for the hard edge model. 

&ol) = &q1’(3-2Tj ). (30) 

If the beam is gradually accelerated, the matching condition, Eq. 
(17). still holds but all the terms are functions of the beam energy. 
Nonrelativistically. we replace the variable emittance E by the constant 
normalized emittance Ed : 

E2 = 
2MW 

+ --; 
N(lV 

ryl is the mass in atomic units, qV is the beam energy in eV, and W is 
the proton rest energy in eV. Using also Eq. (29), the matched beam 
condition [Eq. (17)] can be written in the form 

2 
g(T+U2 = c,b’” + -L”. %N M 

“04 Ai A,4 q 
(32) 

where C,, is the perveance coefficient (47r~o)-‘(r1/2q)~~, and where 
E tN is assumed to scale with energy according to Eq. (31). ‘4 slight 
correction would be needed for a large ripple fraction that varies much 
with energy. In the low current limit. U = VI/Z approximately. For 
a bright beam with small ernittance (strongly depressed tune), we may 
neglect the last term and find 

u = v”4. (33) 

This simple quarter-power rule (or the complete result, Eq. (32)) has 
been useful in designing ESQ-focused dc accelerators. Figure 2, from 
[ 1 I]. shows a typical design based on these results. 

2 

cxdi, 

0 
0 z(cml 300 

Fig. 2. Beam cnvclopes and quad localion> for a low-gradient I-MV ESQ 
accclcrator, including matching section; 200 mA of He (or H+) per channel 
is accclcrated fmm 100 kcV to I McV. Transverse lemperature was 4 cV. 
ESQ focus voltages arc found using Eq. (33). (Taken from Ref. [I I].) 

Note Added 

T.P. Wangler has pointed out an earlier reference [ 141 where Hill’s 
equation was treated by a simple two time scale method [ 2j and space 
charge was considered. However, space charge was unrealistically 
modeled as a round cylinder with constant radius equal to the 
quadrupole radius. Also, there was no attempt to include higher order 
terms such as our ripple corrections [Eqs. (14). (25), (26), etc.]. 
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