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COMPUTER SIRIULATION OF SYNCHRO-BETATRON RESONANCES 
INDUCED BY A NON-ZERO CROSSING ANGLE IN THE LHC 
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SL Division. CERN 121 1 Gcncva 23, Switzerland 

Abstract: 

The beam-beam interaction at a finite crossing angle can 
excite satellite resonances since it couples the longitudinal and 
transverse particle motions. A computer simulation has been 
used to show the existence of these synchrobetatron reso- 
nances for the LHC and to study the dependence on LHC 
parameters such as the betatron tune, the linear beam-beam 
tune shift and the crossing angle n. Possible constraints on 
the crossing angle are investigated and discussed. 

INTRODUCTION 
Synchro-betatron rcsonanccs or satellite resonances can be 

excited when the transverse motion of the particles is coupled 
to the longitudinal motion and the relation 

n-Qx + k*Q, + m*QS = p (1) 

is satisfied by the betatron tunes Qx, Qz and the synchrotron 
tune Qs where n, k, m and p arc integer numbers. Different 
effects can drive synchro-bctatron resonances and the effect 
investigated in this report is the beam-beam interaction at a 
non-zero crossing angle. Satellite resonances induced by the 
beam-beam effect have limited the luminosity of the DORIS 
e+e- storage ring [I]. In the original design of the ep storage 
ring HERA at DESY a crossing angle was forscen. Com- 
puter simulations have been used to investigate its effect and 
led to the decision to abandon the crossing angle [2]. For the 
LHC a crossing angle is foreseen and studies have been made 
to investigate the effect of this crossing angle on the short 
and long range beam-beam interactions [3]. It has been 
shown that the proposed crossing angle of a = 96 prad is not 
sufficient to reduce the tune spread induced by long range 
forces in the very high luminosity intersecrion regions [3]. ,4 
larger crossing angle, however, may cause the excitation of 
satellite resonances and could cause the loss of the particles. 
The purpose of this report is to investigate the constraints on 
the crossing angle due to the excitation of synchro-bctatron 
resonances and to determine whether the suggested crossing 
angles [3] can be used. 

BEAM-BEAM EFFECT W7TH NON-ZERO CROSSING 
ANGLE 

When two bunches collide at an angle n the particles in the 
bunch ccntre experience a diffcrcnt beam-beam interaction 
than particles at a distance 6s from the ccntrc. Since the 
longitudinal position of the particle always changes as it pcr- 
forms synchrotron oscillations, the longitudinal motion is 
coupled into the transverse motion and causes the excitation 
of satellite resonances. The geometry of the collision is shown 
in Fig.1. 
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Fig.I: Beam-beam interaction at a non-zero crossing angle. 

It shows two bunches crossing at an angle n. A particle at a 
distance 6s from its own bunch centre and without transverse 
displacement passes the centre of the opposing bunch at a 
distance d = tan(a’2)& which is approximately E 6s*rr/2 for 
small a. The particle will receive a transverse kick which de- 
pends on d and therefore on the longitudinal position. For 
the head-on beam-beam interaction the kick is dcscribcd by a 
function f(r) whcrc r is the transverse displacement. For a 
round Gaussian beam the function f(r) becomes: 

f(r) E [x z*(l - esp(r’j20?)) ‘r (2) 

where [x z is the tune shift that zero amplitude particles cx- 
pcriencc in a head-on hcam-beam collision. 

The parameter [x,, can be expressed as: 

tx = b!rp.j3xi2vky(ox + uz)*ux (3) 

where rp is the classical proton radius, N the number of par- 
ticles per bunch and ux and ‘Jo the transvcrsc beam dimcn- 
sions. The number of bunches in each beam is k, y is the 
relativistic factor and j3, and pz are the horizontal and v.erti- 
cal bctatron amplitudes at the interaction point. For the ex- 
prcssion for [z the values for ox and oz have to be intcr- 
changed. For a head-on collision of two round Gaussian 
beams [x = sz = [. 

For a non-zero cros+ng angle, (3) ha\ to bc modificd as: 

[, = Nr P x, jj. Znk~r(~cff+ nz)~ cff (4 

vcith an effective beam size ccff : 

“(,ff = (dx + (a 2)‘.n*$’ (5) 

whcrc os is the longitudinal r.m.s. beam size. It is as\umcd 
that the dispersion is zero at the interaction point. For a 

vertical crossing , the parameters for ox and ‘Jo have to bc 
interchanged in (4) and (5). Two more parameters arc im- 
portant for synchro-hetatron resonances, the characteristic 
angle and the synchrotron tune. The characteristic angle is 
the crossing angle at which the ratio between the longitudinal 
and transverse dimensions is such that the ends of the 
bunches just separate when the bunch ccntrcs collide. The 
ratio avs~2nx z should bc smaller than one 151. The longitu- 
dinal and transvcrsc beam sizes are expressed as the r.m.s. 
values us and ox z. For the nominal LHC crossing angle of 
96 prad [4] this qatio is = 0.3 but approaches 1.0 for a cross- 
ing angle of 280 prad. For comparison, this ratio is 4 for the 
original HERA design and 0.5 for the SSC with a crossing 
angle of n = 75 urad. The main difference between e+e- 
storage rings and pp colliders is the synchrotron tune which is 
much smaller for hadron colliders and therefore the satellites, 
even of higher order, are clustered around the betatron reso- 
nances. The synchrotron tune Qs is 0.0016 for the LHC as 
compared to 0.03 for the e+e- storage ring DORIS I or 
0.016 for HERA. The linear tune shift E is also usually much 
smaller in hadron colliders. 
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SIRIULATION MODEL ing the tracking were recorded and the ratio is plotted against 
The simulation model used hcrc concentrates only on the the horizontal tune value. The linear resonances as well as 

beam-beam aspc:t of the particle motion. It can be divided the satellite resonances should appear as enhancements in the 
into three separate parts, the particle transport between the diagram. Since this maximum amplitudes depend on the ini- 
interaction regions, the beam-beam interaction at a crossing tial phase between the transverse and longitudinal motion, 
angle and the synchrotron motion. the inital phase of the transverse horizontal motion was var- 

ied. As an example the tune scan around the third order re- 
Transverse vczriabks anti p&tide transport sonance with a crossing angle of n = 96 ,~rad is shown in 

The variables used for the simulation are the horizontal and Fig.2 
vertical displacement (x and z) and angles (x’ and z'). Be- 
tween the interaction regions the transverse variables are 
transformed linearly. Neither linear coupling between the ‘.i 1 r;;,,: ,,,,, I.-. ~,:-,j.,:,.. 

two planes nor higher multipole errors in the magnets were 
j 1 considered. The tune values are Qx = 69.25 and Qz - 2 ‘5 ‘, ,( 

69.31 with a beta value of px,z = 0.25 for the high luminoci- Zk, : f 
ty and 13x,, = 0.5 for the medium luminosity interaction rc- :.: ., 
g1011. t : :c 

Longitudinaf motion 2 j; s 
The longitudinal motion is described by two variables: SE/i!! 

1; ; 
.; 

which is the relative energy deviation and the longitudinal ‘, : -* :: II ) 1 
displacement 8s. The synchrotron motion is described by 3 i;; 
set of coupled equations 161: 
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i< the momentum compaction factor, R is the mean 
8, j. I?;, .,!I’?. IX” Ii ici 55, 23 

where 0 ,;h 
radius o ? .- the ring and Qs is the synchrotron tune. For com- 
puting speed considerations the nonlinearity of the synchro- 
tron potential is not taken into account in equation (6) but its Fig.2: Third or&r ~C.Y~~IIII ‘C IL~idl li = 96 qY?d crnss'l7g mgf'. 

effect on the results has been checked and found ncgligiblc. 
The longitudinal position is updated as 

The resonance and the svnc’nro-hetntron satcllitcs arc clearly 
visible. Norm:Jly an odd order resonance (like the third or- 

RSi + 1 = 6Si - np * C s (SEjE)i (7) der) would not be obscrvcd as a beam-beam resonance zince 
the beam-beam forces excite only e\‘cn order resonances, but 

‘The momcr,:um compaction factor is “p and C is the circum- 
fcrcnue of the machine, The other paramctcrs used for the 

the symmetry of the potential is broken by a crossing anglr. 
Tl lc resonances do not appear at their precise theoretical po- 

simulation can bc found in 131. sition since the tune is shifted due to the beam-beam effect. 
This shift is a function of ‘the linear beam-beam tune shift 5, 

lkam-hrum in!ertrc’tion 
At the in:erscction rcgiotls the transverse and longitudinal 

the amplitude of the particle a:ld the crossing angle. 

motion ii ~lhanged by the L bc*lrn-beam interaction. The IIIGIIER ORDER RESONANC’C:S 
beam-beam interaction is represcntcd by a kick which is cal- To study the possible restrictions originating from 
culated from (2) and x’ and z’ are changed accordingly. The b cam-beam induced rynchrn-Matron rcsondnces the main 
ca!culntion is done by replacing x by x + n&/2 in the for- 
mulac used for the beam-beam kick. If only horizontal 

high order resonances in the vicinity of the LHC working 
point have to bc investigated. The actual 5vorkir.g point of 

crosslng is assumed wc get: the LHC, i.e. Qx - 69.28 and QL =. 60.31, is close tc two 
resonances, namely the scvcnth or&r resonance SQ, i- 2Qz 

Ax’ = f(x + w6s/2) (8) = 2 and the twelfth or&r resonance PQ, - 44, 4 1. The 
twelfth order resonance is expected to be excited even for a 

Since the beam-hcam kick has a longitudinal component, the l lead-on collision and can therefore not be ;luCi:cd, cvcn with 
synchrotron motion is also influenced by the beam-beam in- a zero crossing angle. The se\,en:h order rewnancc is nor- 
tcraction and can be written as maily not cxcitcd by :ho beam-beam force in a head-on colli- 

sion. 
1E,‘E = a,‘2 * f(x + n&$2) (9) 

The complete coupling is described by equations (8) and (9). 
Twelfth order rpsonance 

In Fig.3 the sate1lit.e~ of the 12th order rcsonxncc arc shown 
for a crossing angle of a = SO prad and in Fig.4 for (Y = 2X0 

Simulation strareKv prad. Particles were tracked with amplitudes LIP to 40 since 
To scan the satellite resonances, the particles at given am- high order beam-beam resonances arc only excited for Iargo 

plitudes were tracked for different horizontal Q-values while amplitude particles. 
the vertical tune and the synchrotron tune rcmnined fixed. 
The amplitudes used were in the range of 0 3 to 4 o and the 
particles were tracked between 50000 and 64 * IO6 turns. 
The maximum and minimum amplitudes which occured dur- 
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Fig.3: Twelfth order resonance with (1 = SO prad crossing angle. Fig.5: Seventh order resontmce with CL = SO prad crossing an&. 
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Fig.4: Twelfh order resonance utith n = 280 prad cro.wing arlgle. F&.6: Seventh order re.s/j,lance ,vit/l a = 280 prad c*rosrirlg arr,o[c 

This resonance is driven by the beam-beam cffcct and cannot 
be avoided even in case of a zero crossing angle (head-on). It 
is clearly visible that with an increased crossing angle more 
satellites are excited. i.e. satellites of higher orders, but the 
maximum amplitude excursion is not significantly increased 
with the beam-beam parameters investigated. The maximum 
amplitude increase was about 5%. 

Seventh order resonance 
The scvcnth order resonance is only excited for a non-zero 

crossing angle and in Fig3 and Fig.4 it is shown for u = 80 
qad and 280 prad. 

The observation is again a larger number of satellites when 
the crossing angle is increased. 

Stability qf phase pee 
To test the stability of the phase space, the cie~clopnie~it of 

the p;irticlc amplitudes on the satellite reson3nCfs wcrc ir?i L%- 
tigated as a function of time. No dependence of the time ha< 
been found even after a very large number of turns. The 
width of the satellite resonances is very small ( 0.00001) and 
as the amplitude increases, the detuning is large enough to 
take the particles off the resonance and the amplitude in- 
crcasc is stopped. 
If no other mechanisms, such as tune modulation, ripple on 
the power apply or other strong non-lincarities are intro- 
duced, the phase space is srablc with the parameters invcsti- 
gated. Computer simulations always suffer from t?le fact that 
it is difficult to prove the long term stability of particles and 
additional expcrimcnts hn\,e to bc carried out. Such experi- 
ments are foreseen in the SPS/LEP complex to study the ex- 
citation of synchro-bctatron resonances bcforc final conclu- 
sions will be made. 
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