AN EXTRACTION OF ELECTRONS FROM A SYNCHROTRON ON FOURTH ORDER RESONANCE

Yu. A. Bashmakoy, R. A. Beloyintsey, V. A. Karpoy

P. N. Lebedev Physical Imstitute USSR Academy of Sciences

Leninaky Frospect 53 USSR 117924 Moscow

Abstract: The nonlineal fourth order resonance of the radial betatron oscillations have been successfully used for a slow extraction of the electran beam on the 1.2 GeV Bynchrotron "Pakhra".

Introduetion

Nowadaye the family of third order resonances of radial betatron oscillation is used on a wide scale for an extraction of particles from cyclic accelerators. However sometimes it is rather difficult to apply rezonance of these type for the beam extraction. Thus for the 1.2 GeV Electron Synchrotron "Palkhra" the distingished resonance of radial betatron oscillation $\nu_{z=2 / 3}$ lies unacceptly far from the worling point of the synchrotron. At the same time the fourth order resonance $\nu_{\mathrm{K}}^{\mathrm{f}}=3 / 4$ is situated mueh close to tre point. Tris fact has impeled us to study the opportunity of employment of the resonance for the electron extraction [1, 2]. It was proved that for exiting the fourth order resonance the introduction of the proper azimuthal harmonic of cubic nonlinearity of the guiding magnetic field is required. In present paper the extraction of electron beam from the "Pakhra" Synchrotron is discussed.

Basic outline

Required resonant conditions are fulfiled by two pole face windings, and there are separate pairs of quadrants for either winding. The gradient winding plased at the fivit and third quadrants brings the index of magnetic field from working value 4.51 $\left(v_{\mathrm{K}}=0.802, \nu_{z}=0.819\right)$ to resonant one 0.63. The necessary third azimuthal hamonic of cubic nonlinearity of magnetic field exiting resonance growth of electron occillations is forming by octupole winding. The winding occupies second ard fourth quadrants. The resonant build-up of electron oscillation pesults in electron throw into the firet septum magnet apenture. This magnet instaled in the linear gap between the first and second quadrants deflects electron toward the center of the synchrotron. Having run over the second quadrant electron hits into the second extraction magnet which kicks it outside with the result that passing some part of the third quadrant the electron beam escapz from the synchrotron vacuum chamber.

At resonance the amplitude of the radial betatron oscillation a will increase if the following condition will meet

$$
\begin{equation*}
A_{3} \cdot a^{2}: 12 \cdot\left|v_{x}-3 / 4\right| \tag{1}
\end{equation*}
$$

where $A=\frac{R_{O}}{3!H_{O}}\left(a^{3} H_{Z}\right.$ id $\left.x^{3}\right)$ is true amplitiude Gf magnetio field, Po iz the equilibrium orbit radiue in the guiding magnetie field H_{O}. In this case the amplitude increment at two succerive passage (within four revolutions)
near by the exterior current sheet of the first septum magnet, whose distance from the central orbit is x_{s}, is equal to

$$
\begin{equation*}
\Delta a_{8 \pi}^{s}=\frac{2 \pi}{3} A_{3} s_{s}^{3} \tag{2}
\end{equation*}
$$

The oftraction efficiency is determined just by this expression. Having defined A_{3} from (2)
the boundiry frequency detuning $0=|v x O-3 / 4|$ can be rind according to known distribution of the betatron oscillation amplitudes (see (1)).

Extraction system equipment

Now we are going to description of individual units of tre slow ertraction system.

Pole face windings

Gradient winding: The gradicnt winding contains 38 straight conductors lying on the magnet pole which are connected with reverse conductore such that 19 are internal and 18 are cuternal relative to the magnetic gap. One ampere current in this winding excites in the center of the working space the gradient equal to $\partial \mathrm{H}_{z^{\prime}} / \mathrm{d}=0.524 \mathrm{oe} / \mathrm{cm}$.
octupole winding: The octupole (cubic) magnetio field iz formed by 17 straight conductors. The current in three centraly located conductors flows in reverse direction from current in the remaining fourteen conductors [3]. Six internal and five external reverse conductore are used. The radial dependens of the field and the gradient of the winding ave shown in Fig. 1.

Fig. 1. Magnetic field (1) and gradient (2) distributions introduced by the octupol winding.

One ampere current excites in the center of thic wgrking space $_{3}$ the octupole field ${ }^{2}{ }_{H_{z}}^{C} / \mathrm{w}_{\mathrm{x}}=0.0445 \mathrm{oe} / \mathrm{cm}^{3}$.

Besides required nonlinearity there are others accompaying nonlinearities. Thus it is
rather essential the presence of the constant (dipole) companent of the ficld $\bar{H}_{z}=-0.16000$. At the large distances from the equilibrium orbit it is appreciable fifth order nomlinearity ${ }^{5} \mathrm{H}_{z} / \mathrm{K}^{5}=-0.1940 \mathrm{c} / \mathrm{cm}^{5}$.

It can has an influence on the particle motior at $x=a s \quad a \quad$ vesult, the amplitude increment $\Delta a_{8 \pi}$ can be roduced in comparison with value given by (2) [4]. Indeed for the real "octupole" field distribution shown in Fig. 1 dramatical changing is observed. The eleotron motion on phase plane at the azimuth of the first septum magnet for following parameters $I_{\Delta n}=4.956 \mathrm{~A}, I_{ \pm 3}=10.5 \mathrm{~A}$ is shown in Fig. 2. The rate of the betatron oscillation growth reduce in comparison with equation (2).

Fig. 2. computed phase plot of the electron resomance betatron oscillation.

The third azimuthal harmonic of the pertubation iz produced by reversing the current direction in the octupole winding in going from second quatrant to fourth one. Ita amplitude is $\left.\left({ }_{3} H_{z} / d \mathrm{u}^{3}\right)_{3}=0.59\left(\mathrm{H}_{2} / \mathrm{H}_{\mathrm{K}}\right)^{3}\right)$, where $\left({ }^{3} \mathrm{H}_{\mathrm{z}}\left(3 \mathrm{X}^{3}\right) \quad \mathrm{i}=\right.$ constant within the quadrants [2]. Under such connection circuit the dipole component of oetupole winding introduces firet harmonic of the azimuthal distortion of the equilibrium orbit.

Ejgetion magnets

Finst septim magnot: The firet septum magnet consist of four magnetic blocki which are splited by three coper brackets [5]. The dimension of the gap are 1.2 cm height and 3.6 cm width. Septum thickness is 0.1 cm . The fringing field at diztanee more thar 0.1 cm from septum is less than $2 x$ of the field in the core gap. At the marimum current at the first septum magnet equal to 800 a strength of the magnetic field in the gap is 800 0e. The magnet lengtry is 42 cm .
scond septum magnet: The second sertum
magnet is composed of four just the same magnetic blocks as first one. Its septum is water cooling and has 0.5 cm thickness. The field strength in the gap of this magnet can be raise up to 4000 oe at the current 4000 A . Both magnets location relative to contral orbit can be changed by means of the displacement equipment in 5 cm range.
Puleers
The polo face windinge and septum magnets are fecded by four current pulsers. Tho pulcos shapes are designed to work on the flat top part of the pulse of the guiding magnetic field of the eynchrotron. The leading edge of these pulsez is 1 maee and their flat peaks lange from \therefore mser to 3 msoc. Repetjtion rate $i s 50 \mathrm{~Hz}$ The accuracy or current stabilization at the flat peak is 0.3\%. The possibility of doformation of the top of the gradient winding current pulse je ioreseen. The range of this change is few per cent of the height. A standard current pulse in the gradient winding is shown in Fig. 3 at the bottom. All current pulses are turn on

Fig. 3. Oscillogram of a gradient winding current pulse (bottom trace), time structure of the external beam, $2 \mathrm{~ms} /$ square.
simultancously. The triggoring moment measured from the injection can be variated over a wide range.

Entraction procoss

The oxtraction was accomplished after the electrons had reached 670 MoV encrgy not far from maximum of syrichrotmon magnetic field which has been sinusoidaly changed. The amplitude of acoelerating voltage on the synchrotron cayity was almost constarit. Due to the sharp radial dependence of the gradient introduced by the octupole winding it iz esential to accurate select the frequency of aceelerating voltage which determines position of the equilibrium orbit. The starting detuning of the radial betatron oscillation frequency at which extraction is beginning is determined not only by the amplitude of this oscillation but also by synchrotron one. The dynamic of the elcetron beam at it acceleration in the "Pakhra" Synchrotron was investigatod in Rof. [6]. It is ehown that both betatron and radial-phase oecillations make a eontribution into radial beam dimension and the latter is twice as much former. In the circumatances the range of the resonance action ie being widened in comparison with (1)

Time depenclence of the circulating current at slow extraction mode is shown in Fig. 4. The gradient and octupole curments are accordingly $I_{\Delta n}=4.4 \quad \mathrm{~A}$ and $I_{R 3}=20$ A. This picture is very sonsitive to the $I_{\Delta n}$ current, whose value is choosing that way to obtain tho

Fig. 4. Circullating current during extraction process, 2 mstsquare.
very smooth fall down of circulating during extraction current. The typical extraction diration is between 2 and 3 msec , which at 50 Hz frequency of repetition magnetic cycle corresponds to a dute factor of 15 per cent. Fig. 4 displaies move than 80% of accelerated particles leaving the synchrotron vacuum chamber. The octupole winding current was choozed to minimize the gamma-quanta fluk from the current sheet of tho first septum magnet. The flux given by electrons striking the sheet was registred by a seintillation detecton and ar ionization chamber placed Gpposite the suptum magnot exit for this reason there is a epecial window in tre racuum chamber. Then fine tuning of $I_{\Delta n}$ current was carry out. The beam goes out the vacuiam chamber through an one-millimeter aluminiam window.

Extermal beam

The window azimuthal , josition (36° from the stant of the quadrant) is determined by an amerazure for the extracted beam in an accelerator hall wall. Roquired currente in the first and the second septum magnetis ano equal to 450 A and 2460 A respectivel \because. A profile of the external beam right away the window was fincled by photography. The transvaree section of the beam is ellipae with vertical axis 0.6 cm and horisuntal one 1.2 om. centur of the beam at the window i: 12.5 cm aray the sunchrotron central orbit.

Time emucture of the external beam is Ghom in Fig. 3 (upper line). Located close to the route of tho beam scintillation gamma-quanta detector has been used. Tris pulse inhomogenity as well as nature of steps cn Fig. 4 very likoly in caused by the manifestation of synchrobetatron resonances.

Moving through the machine fringing field thectronz undergo radial defocusing and vertical focusing. The beam sizes at five metergs away from the exiting window are vertical 1.2 cm radial 12 cm . Certain contributions into these sizes are making by
multiple electron scat,tering in the window and air as well as changing of the gulding symehrotron magnetic field. The external beam intensity has been measured by an ionization chamber and a quantometer. About a third of all extracted pariicles has been catehed by the quantometerfo Measurerd beam intensity was approximatly 10 electrons per second.

Conclusion

Thuz it has been experimentaly proved that fourth order betatron oscillation resonance can be succeasfuly used for slow extraction of particles from synchrotrons.

Referonoes

[1] Yu. A. Bashmakov, K. A. Belovintsev, "Possibility of particle slow oxtraction from a symehrotron on fourth order resonance, " Kratk. soobshn. Fiz. FIAN SSSR,N1, pp.18-22, 1972 [Sov Phys.Lebedev Inst.Rep., 19721.
[2] Yu. A. Bashmakov, K. A. Belovintsev, Particle dymamic at slow extraction from the "Pakhra" Synchrotron at 3/4 and $2 / 3$ nesonances, Preprint FIAN SSSR, N105, M.,1972..
[3] Yu. A. Bashmakov, "Formation of multiple magnetic fields for an electron slow extraction from a synchrotron on fourth order resonance," Prib. Tekh. Ensp. N6, pp.44-47, 1989.
[4] Yu. A. Bashmakov, "On influence of additional nonlinearities on particle dynamic at a slow entraction" Kratk. soobshn. Fiz. FIAN SSSR,N11, pp. 47 50, 1972 [Sov. Phys.Lebedey Inst.Rep., 1972].
[5] Yu. A. Bashmakov, K. A. Belovintsev, V. A. Karpov, V. E. Pisarev, K. N. Shorin, "Deflecting septum magnet" Prib. Tekh. Exsp., N3, pp.21-22, 1977
[5] Yu. A. Bashmakov, V. A. Karpov, A. Yarov, "Electron beam dynamic at synchrotron with fast magnotic cycle, Zh. Tokh. Fiz. vol. 54, N5, pp.905-911, 1994 [Sov. Phys. Tech. Phys. vol. 29, p.539, 1994].

