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THE INFLUENCE OF CHAMBER INDUCTANCE 
ON THE THRESHOLD OF LONGITUDINAL BUNCHED BEAM INSTABILITY. 

V.J.Balbekov, S.V.Ivanov 
Institute for High Energy Physics, Serpukhov, 142284, USSR 

Ream interLs:ty ln a synchrotr-on boirq hrgh enough, 
Inductive inqzedance is capdble of maintaining sustained 

cchcr-Pnt osr1lIat roncj of a bunch at worse. ht these 
can tlur, out unstable grven the presence of addltionul 
impednncc with n Insltlve real part.. ‘Ihe paper studies 
the thresholds of multiPole lnstahilities of a bunch 
urticr the assumpt.ron that all It.5 ~osc~llnt~o~l e1ger,- 
mcdes are det.ermrned by bn inductance of the vacuun 
chamber The acceptable value of Its impedance is found 
to corncrde with the well-known local criterion for 
stabrlrty of microwave oscillations multipled by the 
va 111s of relative spr-end of synchrotrnn frequencies. 
The effect of stationary space charge self-fields IS 
nlso estlmat~. 

Let us consider a problem of longitudinal instabil I-- 

ty of n hvlrh when itiuctive imPedancc is dcmlnating in 

the beam environment and the real part of impedance is 

0llEtll: 
2. k 

(0) = ikwsL, (1) 

where k 1s an asrmuthnl harmonic number. C2 is the 

frequency of coherent oscillatrors. ws 1s the argulm 

velocity of a synchmncus particle. L is the effective 

inductance of the chamber. It is convenient to use the 

int.egral equation for the function J(B) which is 

describing the dependence of the current on the azimuth 

in the co-moving cmrdlnate system (11 : 

J(d) = -!-- K(6.6, )d+, W(6,- *2)J(~2jde2 , (2a) 
WR 

K(B, ‘~3~) = $ p j ~~‘;k,““’ * 
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Here E and II, are the energy and the phase of synchrcY 

tt-on oscillnt.lons. nSm is their frequency ark3 ilo 1s 

the small oscillntlons frequency, tl is the particle 

angular veloclt.y, M is the number of lunches, Jo is the 

overage beam rurrent, C = mc2r and p are the particles 

energy an3 n?ducRd velocity. 9 = a - r 
-2 

, a is the mo- 

mentum compaction factor, Ap/p IB the muximal momentum 

spread. Iticx n = l.....M is munberrng the collective 

mxles of bnm csclllations which ore discrimrnated by 

the value of bnrnch-tcrhinch @ruse shift of coherent 

oscillatrons, AJ, = 27cn/M. The distribution function 

F(E1 is normalized by the conditron 
00 

I 
dE E 

F(E) ____ 1 -A? 

ne(E) no ’ 0 
(31 

where E 16 tt1t7 
0 

maxim 1 enlwcJy of synchrc,tr-on 

osclllat1ons h’hen the impedance IS ql”t?i1 179 Gy. I li, 

equation (28) gets simplified: 

w L 
Tr 

hi(n)“‘(d) - - 2 -E- 
I 

K(8.6,) J(d, Id*, (4 I 
MR .- 7c 

where h i 
(01 18 an elgen-value of &. (4) wh7,rh i:: 

satisfying the drsperslon equatron: 

hicn\ = 1. (5) 

It 1s shown in Ref. [lj that thlr; ~rr,hlcm has <it 1 I y 

stable solutions when synchrotron osci i lr4trorILi arc 

1 rnedr. tit we need to take into account the spread o! 

synchrotron frequencres to plot the threshold map. For- 

this Purpose we shall write down the eigen-value hi(nl 

as a qundric function31 in terms of the normalis& 

eigon-function Ji ($1: 

* 

2 

.~,(*(E.+, )coa m+ dJ) 

The threshold curve is the mapping of 11ne ReO = 0 onto 

the ccqlex h-plane. The functions Ji(b) ur-P unkr~wn 

here, but we can easily imagine the general appearance 

of the threshold curves owing to the presence of reso- 

nance denomiMt0r-s in b.(6). RestrictIT ourselves t.0 

the falling-off distrititions F(E) and monotonous fun- 

ctrons as(E) we receive the result as in Fig.1. Fach 

loop of the threshold map is connected with a contritxl- 

tion of some term of series in Q.(6) (multlpolej ard 

is placed in the upper or lower half-plane (dependlry 

I clnbdlly I IM (A) I 

Fig.l. A drflft of thresold curfes. 
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of the sign of Ren). Therefore the threshold curve does 

not crox the real axis. ‘Ihe only exception is the map 

plrg of a vicinity close to the [mint ReO=O. This fea- 

t.uTe is corvlccted with the problem of supprcsslrg the 

ntqat~ve mass ir&abllity inside a hmch by stationary 

space charqe se:f--fields. We shall not discuss this 

problem us 1t is essential for much higher hoam lrrterr 

sitios a3 compared to t-he ones treat4 in the paper 

?Imtuble parumetcm 81-c located lnsslde the reglor= 

cncirclcd by sepornto loops of ttte map These could ha- 

ve represented physically feasible oscillations, shculd 

the r.h.s. of Q.(5) contain a cou~plex quantity. Cons--- 

derlrg that It IS not the case. we arrive at the known 

concluslor. that an induct: :ve lmpctlanre can never cause 

hmched beam inetahi 1 i try. Eut the presence df the real 

addltlnn to t:?e Impedance puts llmlt,nt Ion on the to1e 

t-able value of the Inductlvlty, that was shown ln [21. 
We consider- this problem not fol lowirq the approxi-- 

matinrl of the “rigid” mode of tunch oscillations 

Let UY supme that some ndditlonal impedance chara-- 

cterlzed by R&,X! 1s located on the orbit aloq with 

the impcdnnce of Eq.(l). We do not naed its oxpliclt 

expresslon. Slfflce It to suppose that this extrn imv- 

dance is rather a small one arri, by itself, cannot 

cause any bsam instability. avlch ctscillatlons eigerr- 

modes are still determlnd by the dominant irductance. 

Neverthe 1 ess , the form of the threshold maps changes: 

they are ww rotated at a small angle 0’~ that can be 

estimated. say. by per-turlxitloil theory As a result, 

the cuts between loops are rotated away fawn the real 

axis and the [“oint h = 1 can find itself within the in- 

stability reg:on. Herefrom. to provldc beam stability 

one should require that this point be placed beyond all 

the cuts of tlie lnltlal thr-e&old map, 111 other words 

max RehiG’) Imh -0 < 1 (7) 
n,i i 

Rxther we shall examine the case of a small nonfl- 

nearlty that IS most important in practice. In this 

case It is possible to use the uncoupled multipoles 

approxlmatlon keeplrg the only term in the meries of 

Eq.(Zbl. It is convenient to ~>nss to normalized 

variables $ = xAB, E = EEL, f(e) = F(Eoe), where ZAz1 is 

the hulch lergth. Then the stability condit.ion (7) can 

be written down as 

h ~l,,,$) < 1. (e-3) 

2 L ws “e 
h 7 -. -______ 

M R At) Acin 
(8b) 

The parametol- h is approximately coincident whls the 

ratio of coherent shift to the inccherent spread of 

synchrotron frequencies. The dimensionless factor }L 1s 

the eigen-value of the equation 

-1 

* 
’ If’ (~1 1 Tm(x/c) Tm(‘:,,Q’$ 

I (g’ 
2 2 maxcx ,x,1 

wllere T 
m IS a Chebyshev polyncmlal. ‘The elgen--function<; 

3 ,,(x) determlne the set. of the so-called radial mcxlen 

of the m-th order multlpole osclllatiom wh I ch a?- R 

niunbared by irdex I-. TIte parameter E 
t 

1s connected with 

the coherent frequency D = mG s(e*Eol. The regions e*< 0 

and f*> 1 are corresponding to the cordltion 1110 = D 311 

Eq.(7). In these regions Eq.(91 1s Hermitian one and 

has a certain slgfwture: p i 0 when e*< 0, ard p fl\ @ 

when e*> 1. It is also easy to see that the valuen 0 f 

1~ I decrease with 1 E* ( lncreaairg. Therefore 1 t 19 

suffisiently to demand the fulfilment of condition (Oa) 

for e*= 0 ark3 e*- 1. 

Eq. (91 was ccxnphxi numencal ly for the dlstrltut ion 

2-4.K. 2 0 < e< 0,5 
f(E) = 

( 
(101 

4(1-e) 
2 

, 0.5 QE < 1 

The lowest radial mode was determined for each 1 ml ?hr 

results are plotted by the solId lines 1” Fq.2. The 

dipole mode cacillatiom appear to be the most 

dargerous ones twcause the values of 
‘rrrl, ’ are 

decreasing versus q . The current distribntlora along 

the hooch are shown :,-I Fig 2 also for the dlpnle UK&= 

The limitation on the lnjuctivity value fill lows fr-r-,m 

account of the tive result and Eqs.izd).~8): 
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WIIPI P El IR ttw hunch factor W1t.h ttlr t3Ppt inn ot t. hc 

last multlpller. the r.h.s. of m.(lll IS the same as 

ttle ale of the local rrlter-Ion tar st.abl; lty of mlcrc,- 

wiiw cm-1 1 ht 1ow 1’31 Hence. ttw t ht erlhc~ld oi mu1 t I- 

~mle o35) 113t.lon3 IS approximately ,Ans/n_ t ~mer: lower-. 

It I:; necessary to take: into acrcormt the lnf 1 uence 

of the intensive bunch st.at1onar-y self--field on the 

svnchrotr-on ft’emlonry spread, 1 .c. , the spread-lnductl- 

vlty deperdcr~c. ‘lllc lniwdance 1s given by Eq. (1). tile 

potent la! enctqy of synmrotron r?rsci 1 lat ions is: 

27cLJows n(x)-n(O) 1 
UtOl- -~- 

q’VMCl~9.s 1 nq Sn(x)dx 
+ .-- i-2: E2 x2+..., (12) 

2 
0 

where n(x) IS the linear charqe density, q ard V are 

the hnr-monlc number ard voltage of the acceleratlrq 

21eld. the pints mean the external field nonlInearIty. 

Wher-eoi one cd18 find the total oscillatlion nonlIneari- 

ty Iuw: 

nslu, las(E) 
= [e + hrfti(eJ] (13) 

“c 
‘Ihe parameter h 1s defined by J~I. (Elb), where the 

contrllzution from the external field must be taken Into 

conslderatlon only, that IS indicated by subitiex rf .The 

function G(a) qlvlnq the beam self-fleid cnntrlbut.ion 

1s for distrllxltlon 110): 

4 
ti(E) = -- g(e)-2- 

l/2 
CJ(2E:3- :[1-2-l’* II (14a.l 

3 

16 
g(E) = - 

2 J c s1n2y l- E cos2q3 
I dyl (14b) 

x 

Now. one can easily mcdlfy Eq.t@a) to account for the 

stationary self-field effect. As a result, the stabili- 

ty crlterlcn becomes a nonlinear function of hrf: 

h 
h t&+*1 rf 

ef 
3i < 1 (15) 

1 + hrfG(l) 

lhe factors p& are the eigen-values of the Integral 

equation which differs from l%.(P) by the expression 

for its resonant denominator, [c-e*1 -t [w(e)-s*I, where 

W(E) can be refferred to as the normalized synchrotron 

nonlInearlty law: 

E + h 
W(E) 

rfG(~l 
E _---____-- , w(O) = 0. w(l) = 1. (16) 

1 + t1 I,fG(l) 

The estunate shows that up to the near-threshold values 

I&.1 7 1 the w(e)-function varies monotonously wIthIn 

the rawe O< w(e) $1. The computational solution for 

t!:p relevant elflen-value problem can be ohtalned by the 

at orement Ion& terhnlqle. FIU. 3 shows the plot nf 

1.h.s. ot ~.(15) versus parameter- hri for Irnl-1 (solld 

llrles) TWO tnrqpnt I~nes present tne analcxXuc dcpen- 

-1.5 .+- h, 
1-T I l’:tr’, 

- I.5 -1.0 -0.5 0.0 0.5 1.0 1.5 
Plg.3. Effect of stationary eelf-llr?ds. 

dence resulting frcm the first-order appt-nxlmatlor! I t. 

can be seen that the effect of statlonnry space charm- 

self-field wlderrs the reaion of stable parameter-s 

approximately by a factor of 2 for h,:O ot 1 .4 fog- ti ‘il. 

Let us discuss the appllcablllty conditions of r-he 

uncoupled’multipnles approximation. The Hermltlnn natu- 

re of Q.(9) allows one to estimate easily the cnntrl- 

thltlon of the multiple mlxinq by perturhntlnn theory. 

l’hn additive c-orrertions to the +*--values are pi-np:‘r+1- 

onai to the Ans/11 
5’ 

and the pro~rtlonaI1t.y facto! ir 

2n2 

wm = 

TT(nfm) 
m -n 

I 

* 

-0.5 (n=m) 

t J&~cos~,) cos n+ d+ Itie, Ids. I 17 1 

The eummatlon 1s performed over the multlmles n : 0 ok 

the same parity as m. The results on the calculat.lor1 

for dlstrlbutlon (10) are shown in Flqs.?--3 hy the 

dashed lines. It turns out for lnrge Im/ that IpIVk.Im/S’ 

and lhpl”1. meaning that the results obtaIned remaln 

valid till [ml < no/AfJ3. This 1s a typical llmltat.l0n 

on the appllcabliity range of the uncc~uple+multlpnles 

approximation. e.g., see I41 

ik3 an example. Iet us estimate the tolerable vnluc 

of the vacua chamber inductance for the 1st phase csf 

the UNK. The evaluatlnn hy Fq. (1 I ) craves I L~I!~ 1’ ? ‘.l-ln 

for parameters C = 600 GeV. Jo = 1.4 A, 8 = 0.38. )?)I - 
5.11Y4. Ap/p = 6.7*10 

-4 
Account of the statlral 

effects raises the tolerance to 5 Ohm 
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