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SIMPLE METHOD OF THE DYNAMIC APERTURE ESTIMATION

Yu.S. Fedotov
Institute for High Energy Physics,Serpukhov, USSR

ABSTRACT. The method of numeric definition of the

stable motion bourdaries in a nonlinear magnetic field
with the use of the wmatrix methods developed for
periodical linear systems is described  Examples with
sextupolar nonlinearities are considered.

With nonlinear fieid perturbations present in
accelerators ard storage rings, the phase plane of
betatron motion close to the frequencies satisying the
relation Q=p,q. where p,q are integers,is hroken into
domaing possessing different qualities of motion.
Inside the domains in closed separatrix the motion is
stable whereas beyord them is unstable though it may be
limited. The position of separatrix is determined by
that of the fixedpoints, both stable and unstable,
satisfying the equation (1)
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Here M (%,J) is the Hamiltonian of motion close to
the resonance q-Q=p, ¥,J are the standart canonically
conjugate actior—angle variables, n is the twn rnumber.

Even with a simple distribution of the nonline-
arities across the machine azimuth, the analytical
techniques ws for determining the boundaries of
stable motion are very complicated especially if some
nonlinearities take place simultanecusly. Therefore
mnumeric simulation [2] has recently come intc use for
these purposes.

The matrix methods developed for establishing the
conditiong of stable motion in periodic linear systems
(31 can also be applicable for nonlinear systems. For
betatron frequencies close to the rational ratio p/q
the trajectory of a particle obeying the initial
conditions ;1:(1'1 ,r1‘J 15 nearly closed after g turns.
Computing the trajectory with any
applied[4.5.6] calculate the tranfer matrix

correspording to the relevant "period" of g turns such

integration method
Nq (2%2)

that rg—'Nq .

The elements of the Nq matrix are the functions of

the initial conditions, i.e. of the point ;14 For a
-3 -
fixed point (rf,rf) we have a relation r‘f=Nq'rf or
Myg'Tp ¥ Nyp'ry = Iy
(2)
Paq'Fg ¥ Mgp'¥y =1y

which is a system of equations for
eigenvectors of the matrix Nq having the

finding the
elgenvalues

SA = o lati = =2 i
?»1 As=1. The relation T‘qu nyq + Ny, =2 is  therefore

fulfilled for the matrix of fixed points, which is the
general condition far the boundary of stable notion.

The slope of the eigenvectcrs ; of the matrix Nq n (2)
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With Lhe initial conditionz varied by a small
value A;W' the final point also becomes scmewhat

- . -
shifted by Ar,. Since r,=f(r,.ry) then

Or, Br,
Aro= =% Ar o+ = Ary = m  tAr, 4o by
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where M = ) is the matrix of small
A Bz Bpp
deviations from the trajectory possessing the initia
conditions ?1 such that A;Pqu'A;r
The trace of the matrix Mq determines the

stability of small deviations close to the fixed point.

The eigenvectors of the matrix Mq V=(V,V') are found

from the relation

My tv= A-v, (5)
where the eigenvalues are S
Tr'Mq Tqu 2
}\,1 P + — -1 . (6)
2 2
Since 7\,1 -?\.E-ﬂ, the slopes of the eigenvectors are
M M Y Ve -
Vi F \E F:

The eigenvalues ?u1 o are real if ’I‘qui?»?!. In this

case the fixed point is unstable, 1i.e. saddle-shaped.
It is the intersection of two separatrises whose
slopes are equal to those of the eigenvectors (7). If
Tqu(Z, the fixed point is stable, i.e. of the centre

type.
Figure 1 shows the triangle of the
stable motion ard the pogition of the boundaries TrM

separatrix of

=7
=2
and 'I‘rN3=2 close to the third-order resonance  3(Q=110.

calculated for the following
excited by two

This triangle has been
conditions: the resonant harmonic is
sextupocle lenses of strength

1 dZB 1
——-———-—~~;?-—-1 = 0.087 /m2
2B R dr

oo
placed symmetrically in the accelerator ring at the
points where ﬁzl44m and having the same sign of the
sextupole field nonlinearity, Q =36.685.

The section of the half ring between the lerses is

given by the matrix

cos fsin )
N= 1 (8
/Bsm ™) cos ™)

For the sextupole lens in a thin-lens
approximation, the matrix of “large’ deviations is
1 0
N; (9
T Kr o1

where r 15 the deviation of a particle from the lens
axis, while the matrix of "small" deviations is



Fig.1.

Stability triangle and boundaries  TrM, =2

and TrN3=2 of the third—order resonance.

1 0
MS= (10)
—2K'r 1

The pesition of the boundaries is found easlly
with any integration technique applied. A fixed point

on the bourdary Tqu: 2 can be found using relation
(2). The iteration process
Yoyt Ar1, (11)

whetre

(mze“l)[(“11‘1>r1_k*“12r%,k]

Ar‘=
TrM -2
q
m12[“21r1,k*(”22“1)ri,k]
TrM -2
g
‘m11“1)[”21r1,k+‘”22‘1)ri, ]
Ari= -
Tr¥ -2
q
m21[(“11"1’r1,k*“12ri,k]
TrM -2
3

iz faster. Here the elements of the matrixes Nq and Mq
are calculated for the trajectory originating at point
Yok With when Mq=Nq, the
coordinate transformation {11) transforms any point of

nonl inearities absent.

? into the only one fixed point of the phase plane,

1
i.e. into the coordinate origin.
Figure 2 shows the separatrises
with two octupole lenses of strength
1 dBE

6B R dr
[ehie]

for the case

= = 1
K = 1 =3.0 /m3
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introducing amplitude — deperdent betatron frequency
shift, added to the conditions of the above example. In
this case, the motion became limited and. 1n contrast
with fig.1, two more, 'distant’, boundaries emerged,
'IYN332 and "[YM3=2. Hence, three stable points are added

up to three unstable fixed ones. The stable and
unstable fixed points are on different boundaries of
TrN3==2. This is an example of 'strong" 1nstability.
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Fig.2. Stability triangle and boundaries TrM3=2 and
'I‘)'N3=2 of the third-order resonance with  the

octupole field nonlinearity added.

Figure 3 shows the separatrises and boundaries
'I‘rN5=2, TrM5==2 for =36.805 and K=0.047 m’a. As is
seen, the stable and unstable fixed points are on the
same bourdary. Tr"NS-—'Z. This is "weak"' instability. It
should be noted that sextupole field nonlinearity can
excite such instability close to any line of the Q=p/q
type.
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Fig.3. Phase trajectories ard boundaries ’I&”M572 ardd

TrN5=2 of the fifth--order resonance.
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Figure 4 shows the phase trajectories armd
boundaries 'I‘r"R3=2, 'I‘rM3:2 for =36.652,
Ky=K,=0. 1450°°. This is the manifestation of the

sixth—order rescnance on the harmonics of the sextupole
nonlinearity 6(=220 in the second approximation.
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Fig.4. Phase trajectories and boundaries 'IY‘MB:Z and
TrN3=2 of the sixth-order resonance. Shown i3

one area of closed motion around the stable

fixed point.

This technique of determining the boundaries of
stable motion is gimple and demonstrable. The
calculation technique applying the thin-lens
approximation is accurate, simplectic, though somewhat
slow. But since no calculation during tens of thousands
turns 1s not required, in this case much less
calculation time is spent as compared with ordinary
tracking. Or determining the boundaries of stable
motion for different frequencies Q , one can estimate
the effect of frequency ripples due to, for example,
synchrotron oscillations with nonzero chromaticity.

This technique also allows one to detect the
deviation from the Hamiltonian character of motion when
in some areas of the phase plane the boundaries of
gtability of some resonances overlap. Figure 5 shows an

exanple of such a motion for (=36.595, K1=K2=O.07 m—?,
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Fig.S5. Example of quasidiffusive motion close to the

fifth-order resonance.

For the corditions specified and with r>74 mm the areas
of unstable motion of the fifth- and seventh-order
regonances overlap. The manifestation of the diffusive
nature of motion is seen.
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