# **BEAM** *v*-SPREAD DUE TO FIELD ERRORS IN RHIC\*

# G. Parzen, G.F. Dell, H. Hahn and A.G. Ruggiero

Brookhaven National Laboratory

Upton, NY 11973 USA

#### Abstract

The random field error multipoles can produce a significant  $\nu$ -spread in the beam. Tracking studies, for particles with emittances and  $\Delta p/p$  which are within the beam, have shown that a major part of the  $\nu$ -spread comes from the statistically significant average value of  $b_3$  and  $b_4$  in the main dipoles in the arcs. Because of systematic errors in the construction of the dipoles, this average value may be larger than that which one would expect from a purely random distribution of errors. A correction system for the average  $b_3$  and  $b_4$  in the dipoles appears important. Results will be given for the  $\nu$ -spread found for the uncorrected multipoles, and for the  $\nu$ -spread after correction of the average  $b_3$  and  $b_4$ .

#### 1. Introduction

Previous work<sup>1</sup> indicated that the random field error multipoles,  $b_k$ ,  $a_k$  can produce appreciable  $\nu$ -shifts. This study finds the  $\nu$ -spread in particles that occupy 95% of the beam due to  $\nu$ -shifts produced by the random field errors. These  $\nu$ -shifts depend on the transverse emittances,  $\epsilon_x$  and  $\epsilon_y$ , and on the momentum  $\Delta p/p$  of the particle, and on the range of emittance and  $\Delta p/p$  present in the beam that causes the  $\nu$ -spread in the beam. The performance of RHIC depends on keeping the  $\nu$ -values of the particles within a range that is free of non-linear resonances, up to and including tenth order resonances. For RHIC, the available range of  $\nu$ -values free of resonances is  $\Delta \nu = 33 \times 10^{-3}$ . Thus the  $\nu$ -spread due to random field errors has to be kept much smaller than  $\Delta \nu = 33 \times 10^{-3}$ .

The following study finds an appreciable probability for  $\nu$ -spreads due to random field errors of the order of  $\Delta\nu = 21 \times 10^{-3}$  for the worst case. It was also found that a major part of this  $\nu$ -spread could be corrected by correcting<sup>2</sup> the average value of  $b_3$  and  $b_4$  in all the dipoles. By correcting the average value of  $b_3$  and  $b_4$ , the  $\nu$ -spread due to random field errors can be reduced below  $\Delta\nu = 7 \times 10^{-3}$ .

#### **2.** Results for the $\nu$ -Spread in RHIC

The  $\nu$ -shift of a particle in the RHIC beam is found through tracking. For a given emittance  $\epsilon_x$ ,  $\epsilon_y$  and a given momentum  $\Delta p/p$ , the particle is tracked for 400 turns in the presence of the expected random field errors. These field errors are listed in the RHIC Conceptual Design Report.<sup>3</sup> Because the  $\nu$ -shift is a non-linear effect that depends on  $\epsilon_x$ ,  $\epsilon_y$ , the  $\nu$ -shift is found by Fourier analyzing the particle motion over 400 turns. Because of the presence of the random  $a_k$ , the x and y motion are coupled, and more than one  $\nu$ -value may sometimes be seen in the x or ymotion.

In order to find the  $\nu$ -spread in the beam, one should in principal find the  $\nu$ -shift for all particles in the beam, covering the range of  $\epsilon_x$ ,  $\epsilon_y$  and  $\Delta p/p$  in the beam. The largest  $\nu$ -spread is expected for a heavy ion like Au at the lowest colliding energy of interest which is  $\gamma = 30$ . The heavy ions experience the largest growth due to intrabeam scattering and have the largest emittance  $\epsilon_x$ ,  $\epsilon_y$ . After 10 hours at  $\gamma = 30$ , the beam parameters for Au will grow to  $\epsilon_t = \epsilon_x + \epsilon_y =$ 1.92  $\pi$ mm·mrad,  $\Delta p/p = \pm 0.005$  and  $\sigma_x = 3.1$  mm.  $\epsilon_t$  is the total emittance that contains 95% of the beam,  $\sigma_x$  is the rms horizontal beam size, and  $\epsilon_t$  is given by  $\epsilon_t = 10\sigma_x^2/\beta_x$ . The  $\nu$ -shift was explored previously<sup>1</sup> as a function of  $\epsilon_x$ ,  $\epsilon_y$ and  $\Delta p/p$ , and it was found that the largest  $\nu$ -shift for a given  $\epsilon_t$  and  $\Delta p/p$  occurred when  $\epsilon_x = \epsilon_t$ ,  $\epsilon_y = 0$ . It was assumed in the following studies that the largest  $\nu$ -shift will occur when  $\epsilon_x = \epsilon_t = 1.92 \ \epsilon_y = 0$ ,  $\Delta p/p = \pm 0.005$  which corresponds to the initial coordinates  $x_0 = 9.8$  mm,  $y_0 = 0$ ,  $x'_0 = y'_0 = 0$ .

Table 1 lists the results for the  $\nu$ -spread in a beam of Au ions after 10 hours at  $\gamma = 30$  for a lattice with  $\beta^* = 6$  in all insertions. Twenty different distributions of random field errors,  $b_k$ ,  $a_k$ , k = 2 to 10, were tracked. The  $\nu$ -spread,  $\Delta \nu$ , listed includes only the  $\nu$ -spread due to random errors. It does not include the  $\nu$ -spread due to the chromaticity sextupole.

**Table 1:**  $\Delta \nu$  spread due to random  $b_{k_1} a_{k_2}$ .

| Field Error Distribution Number | $\Delta  u / 10^{-3}$ |
|---------------------------------|-----------------------|
| 1                               | 3                     |
| 2                               | 2                     |
| 3                               | 4                     |
| 4                               | 4                     |
| 5                               | 10                    |
| 6                               | 2                     |
| 7                               | 4                     |
| 8                               | 3                     |
| 9                               | 2                     |
| 10                              | 2                     |
| 11                              | 0                     |
| 12                              | 7                     |
| 13                              | 1                     |
| 14                              | 7                     |
| 15                              | 0                     |
| 16                              | 1                     |
| 17                              | 4                     |
| 18                              | 9                     |
| 19                              | 2                     |
| 20                              | 14                    |

The largest  $\nu$ -spread found was  $\Delta \nu = 14 \times 10^{-3}$  which is to be compared with the available  $\nu$ -range free of resonances of  $\Delta \nu = 33 \times 10^{-3}$ . Of the 20 error distributions, 5 error distributions have  $\nu$ -spreads larger than  $7 \times 10^{-3}$ .

The  $\nu$ -spread in the beam due to random field errors is likely to be larger than the above results because of the possible presence of a large average  $b_3$  or large average  $b_4$  around the ring. This is discussed in the next section.

### 3. Effect of an Enhanced Average $b_3$ and $b_4$

The random  $b_k$ ,  $a_k$  used in the tracking runs to find the results given in Table 1, were generated using a random Gaussian distribution generator for given rms values  $b_{k,rms}$  and  $a_{k,rms}$ . In each error distribution, the expected average  $b_k$ ,  $a_k$  value in the 144 dipoles is given by

$$b_{k,av} = \frac{1}{\sqrt{144}} b_{k,rms} = 0.085 \ b_{k,rms} \ .$$
 (3.1)

It appears likely from previous results of magnet measurements<sup>5</sup> that  $b_{k,av}$  will be larger than the above result, and a possible

<sup>\*</sup> Work performed under the auspices of the U.S. Department of Energy.

estimate for the lower  $b_k$ .  $a_k$  is

$$b_{k,av} \simeq \frac{1}{3} b_{k,rms} . \tag{3.2}$$

It will be seen below that this larger  $b_{k,a\nu}$  will increase the largest  $\nu$ -spread found from  $\Delta \nu = 14 \times 10^{-3}$  to  $\Delta \nu = 21 \times 10^{-3}$ .

To find the effect of the larger  $b_{k,av}$  as given by Eq. 3.2, it is interesting first to find how much  $b_{k,av}$  was present in the tracking study to compute the  $\nu$ -spread when the  $b_k$  are generated using a random Gaussian distribution. This is shown in Table 2 for the two worst field errors for the lower multipoles.

**Table 2:**  $b_{k,av}$  generated by a random gaussian distribution.

| bk,av/bk,rms     | Field Error 20 | Field Error 5 |
|------------------|----------------|---------------|
| $\overline{b_2}$ | -0.049         | 0.099         |
| b3               | 0.164          | 0.149         |
| 64               | -0.053         | -0.088        |

It is also interesting to see the average  $b_k$  present in the tracking study for all the multipoles present. This is shown in Table 3 for field error 20.

**Table 3:** The average  $b_k$  in the dipoles for k = 1 to 10 for field error 20.

| k  | bk,av / bk,rms | ak,av/ak,rms |  |
|----|----------------|--------------|--|
| 1  | 0.0000         | 0.0000       |  |
| 2  | -0.0482        | -0.1170      |  |
| 3  | 0.1640         | -0.0844      |  |
| 4  | -0.0530        | -0.0636      |  |
| 5  | 0.1436         | 0.0039       |  |
| 6  | -0.0186        | -0.0065      |  |
| 7  | -0.1005        | 0.1809       |  |
| 8  | -0.0601        | 0.0467       |  |
| 9  | 0.0820         | -0.0874      |  |
| 10 | -0.0044        | 0.0089       |  |

The results shown in Table 2 are in good agreement with the prediction for  $b_{k,av}$  given by Eq. 3.1. It shows that  $b_{k,av}$ present using a random Gaussian distribution is about one half the amount expected as given by  $b_{k,av} \simeq (1/3) b_{k,rms}$ . To simulate the effect of the larger  $b_{k,av}$ , the  $\nu$ -spread was computed when the  $b_{k,av}$  for  $b_3$ ,  $b_4$  was increased in each dipole by a factor of 2 by adding a constant amount to these multipoles in each dipole. The  $\nu$ -spread  $\Delta \nu$  was computed in this way for the 2 worst distributions and the results are shown in Table 4.

**Table 4:**  $\Delta \nu$  spread due to random  $b_k$ ,  $a_k$  when  $b_{k,av}$  is doubled for  $b_3$  and  $b_4$ .

| <br>Field Error | $\Delta \nu / 10^{-3}$ |
|-----------------|------------------------|
| <br>20          | 21                     |
| <br>5           | 16                     |

#### 4. Effects of Correcting $b_{3,av}$ and $b_{4,av}$

It was found that a major part of the  $\nu$ -spread could be corrected by correcting the average  $b_3$  and the average  $b_4$  in the dipoles.

The correction of the average  $b_3$  and the average  $b_4$  was simulated by first generating a field error distribution,  $b_k$ ,  $a_k$  using a random gaussian distribution. For this field error distribution the average  $b_3$ ,  $b_{3,at}$  and the average  $b_4$ ,  $b_{4,av}$ , in the dipoles was then computed. The  $b_3$  and  $b_4$  in the dipoles was then modified by subtracting  $b_{3,av}$  from  $b_3$  and  $b_{4,av}$  from  $b_4$  in each dipole. This then assures that the modified distribution of  $b_3$  and  $b_4$  in the dipoles has zero average  $b_3$  and zero average  $b_4$ . The results<sup>6</sup> of this correction is shown for the 5 worse field errors in Table 5.

**Table 5:** Computed  $\nu$ -spread with and without correction of the average  $b_3$  and the average  $b_4$  for the five worse error field distributions.

| Error Field | Uncorrected | Corrected b3.av, b4.av |
|-------------|-------------|------------------------|
| 5           | 10          | 4                      |
| 12          | 6           | 2                      |
| 14          | 7           | 7                      |
| 18          | 7           | 5                      |
| 20          | 14          | 7                      |

The largest  $\nu$ -spread has been reduced to  $\Delta \nu = 7 \times 10^{-3}$ . This result will still hold if the  $b_{k,av}$  are larger of the order of  $(1/3) b_{k,rms}$ .

The importance of the average value of  $b_k$  is evident in the case where the random  $a_k$  are absent and only random  $b_k$  are present. In this case, analytical expressions for the  $\nu$ -shift are available. For example for the random  $b_3$  one can write for  $\Delta \nu_x$ 

$$\Delta \nu_{\mathbf{r}} = \frac{3}{4\pi\rho} \int ds b_3 \left\{ \beta_{\mathbf{r}} \left( X_{\mathbf{p}} \delta \right)^2 + \frac{1}{4} \beta_{\mathbf{r}}^2 \epsilon_{\mathbf{r}} - \frac{1}{2} \beta_{\mathbf{r}} \beta_{\mathbf{y}} \epsilon_{\mathbf{y}} \right\}$$
(4.1)

where  $\delta = \Delta p/p$  and  $X_p$  is the horizontal dispersion. If one considers the contribution to  $\Delta \nu_x$  from the 144 dipoles in the arcs in RHIC, one can see that the contribution is proportional to the average  $b_3$  in these dipoles. For all these dipoles  $X_p$ ,  $\beta_x$ and  $\beta_y$  give the same contribution to the above integral. Thus the contribution to  $\Delta \nu_x$  from all 144 dipoles will vanish if the average  $b_3$  is zero. The residual  $\Delta \nu$  found from tracking studies after the average  $b_3$  and  $b_4$  have been made zero are due to effects not included in Eq. (4.1). These include higher order terms,<sup>6</sup> particularly terms proportional to  $b_2^2$ , effects due to the presence of the random  $a_k$ , effects due to the presence of nearby resonances, and contributions coming from other magnets<sup>6</sup> than the arc dipoles.

The above study indicates that it will be important to correct  $b_{3,av}$  and  $b_{4,av}$  in the dipoles. The procedure used in the tracking study, where the  $b_{3,av}$  and  $b_{4,av}$  present were subtracted from the  $b_3$  and  $b_4$  in each dipole, can not be carried out for the actual accelerator. Instead, this procedure has to be approximated by placing  $b_3$  and  $b_4$  correction coils at certain places around the ring. A correction coil can be put at each end of the dipole. A correction coil at the center of the dipole is not practical for RHIC, but can be approximated by putting a correction coil in the insertions. This correction arrangement is described in reference 7. A correction coil at the center of the dipole, or a coil that simulates this, may be required in order that the correction coils should provide a good correction of  $b_{3,av}$  and  $b_{4,av}$ .

## 5. Conclusions

This study has found that the random  $b_k$ ,  $a_k$  can produce an appreciable  $\nu$ -spread in the beam. For the worst case, a  $\nu$ -spread of  $\Delta \nu = 21 \times 10^{-3}$  was found. By correcting the average value of  $b_3$  and  $b_4$  in all the dipoles, the  $\nu$ -spread can be reduced below  $\Delta \nu = 7 \times 10^{-3}$ .

These results may present an overly pessimistic picture. To keep a proper perspective on this problem, one should keep in mind the following aspects of the problem:

- 1. A small fraction, about 25%, of accelerators will have random error distributions that cause large  $\nu$ -spreads.
- 2. The  $\nu$ -spread computed above is for the beam dimensions after 10 hours of growth due to intrabeam scattering for the worst case of Au at  $\gamma = 30$ .

- Only particles with large x and small y exhibit the large v-shifts that cause the large v-spread. This again is a fraction of all the particles.
- 4. The largest source of  $\nu$ -spread in the beam is due to the beam-beam interaction, which could produce a  $\nu$ -spread of  $\Delta\nu \simeq 25 \times 10^{-3}$  at the start, which gradually decreases as the beam grows due to intrabeam scattering. The beam-beam  $\nu$ -spread and the  $\nu$ spread due to random errors are not simply additive. The beam-beam  $\nu$ -shift is smaller at large betatron oscillations where the  $\nu$  shift due to the random  $b_k$ ,  $a_k$  is largest.

### References

- 1. G. Parzen, BNL Report AD/RHIC-AP-84, 1987.
- A.G. Ruggiero, BNL Report AD/RHIC/AP/TN-86, 1989.
- 3. RHIC Conceptual Design Report, BNL 52195, 1989.
- 4. G. Parzen, BNL Report AD/RHIC-AP-58, 1988.
- R. Hanft, B.C. Brown, W.E. Cooper, D.A. Gross, L. Michelotti, E.E. Schmidt, F. Turkot, IEEE PAC 1983, p. 3381.
- 6. G. Parzen, BNL Report AD/RHIC-61, 1990.
- J. Claus, G.F. Dell, H. Hahn, G. Parzen, M.J. Rhoades-Brown, A.G. Ruggiero, these proceedings.

# 1514