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Abstract
monitoring system is critical to check the correctness of the op-

When switching on the machine, the beam position

tics, but requires a reasonable optics to be itself commissioned.
At this stage. the measurement of the betatron phase advance
can be a convenient tool. It allows an accurate check of the fo-
cusing even if the beam does not circulate more than one turn
and if the measurements are noisy. The method used consists in
comparing a measured and modelled beam trajectory (or closed
orbit) following a transverse kick. The comparison is achieved
by a cross-correlation, for optimal noise rejection; it requires a
regular sampling of the betatron oscillation, which is suitable for
the LEP arcs. The method proved to be precise to 0.1° in cell
phase advance and contributed to the identification of a spurious
field gradient during the LEP injection tests. The present LEP
phase advances are found to agree well with the model.

Introduction

The LEP arcs are made of regular FODO cells. Besides each
horizontally defocusing quadrupole, a beam position monitor is
installed. The sampling of the beam trajectory is thus made
at equidistant points in betatron phase advance and at constant
amplitude function j3.

Under these conditions, the trajectory excited either by injec-
tion errors or deliberately by powering an orbit corrector appears
as an exact sine wave in the ideal linear optics:

z; = Asin[(i — 1)p + o) (1)

4t i1s the betatron phase advance per cell and ¥, an arbitrary
initial phase.

The measurement of p allows deducing the exact integrated
strength of the focusing magnetic fields, foreseen or unexpected.

Measurement of ; by cross-correlation

The phase advance j, analogous to a frequency, can be found by
Fourier transforming the observed beam oscillation. The small
number of observations (14 for the injection test) and the large
phase shift between them (60°), would have given a poor resolu-
tion.

We have rather used a technique based on the cross-correlation,
which takes advantage of the a-priori knowledge of the signal (a
pure sine wave in our case ).

Principle of the method

The method is easier to present in the special case of a continuous
sinusoidal signal observed over several complete periods.

Let z{#) be the model of the ideal betatron oscillation; € is the
betatron phase angle. Let 2(8) be the observed oscillation, which
may have a different frequency:

7(8) = Asin[f(1 + 2¢)) (2)
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2(0) = sinf

A measures the amplitude, 2¢8 the relative difference between
the model and measured betatron phase advances.
The cross-correlation is given by:
AT )
Ci{r) = —-/ sin(f + 7) sin(f + 20¢)d0 (3)
T Jo
We assume that the difference between the madel and the mea-

surement 1s reasonably small and develop the integral to first
order in 20¢ :

T T
Clr) = ﬂ {ms T / sin® d0 + sin T/ sin 0 cos Bdf +
T 0 0
T T
+ 2¢ [cr»s T / fsinfcos8df + sinr f 8 cos? Bdﬂ} } (4)
S0 0
which can be readily integrated:
2
C(T)z-{;—,{gcosf+25{—§cosr+%sinr}} (5)
The relative phase shift 2¢ and amplitude A are given by:

4 2600

2¢ =

Tsin'r{C(r)g(UCt)(*r)}

1—¢

The calculation of only three points of the cross-correlation func-
tion C(0), C{r), C{—r1), provides a way to access the actual
betatron phase advance and oscillation amplitude, provided the
optics is close enough to its model. An iterative use of the method
makes it general.

Cross-correlation of a sampled signal

In practice, the betatron oscillation is sampled at an arbitrary
number of points n by the beam position monitors (PU's). Let z,
be the model of a betatron oscillation and A# the nominal phase
advance between PU’s:

5 = sin (i — 1)A8 + o) (7
Let the measured oscillation Z; be different in relative phase ad-
vance by 2¢ and in amplitude by A; the origins of the model and
measured oscillations are the same, i.e. the position of the kicker
magnet:

£ = Asin [(i — 1)2801 + 2€) + yio(1 + 2¢)] (8

The cross-correlation expression, analogous to (3), is written:

b
Clhy = A7 Ysin (6= 1)A8 + ¥ + kO8],

sin [(i = 1JAB(1 + 2¢) + po(1 + 20)]  (9)
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In order to retain the parity property of the cross-correlation
function, the summation limits should be chosen:

Yk > 0, a=1.b=n~1%
Vi < 0, a=1~k b=mn

After converting the product of sines into a sum of cosines and
sumnmning the series, one finds equation 10. The terms within
curly brackets { ...} are only to be considered for negative k.

As in the simple case, the zero shift cross-correlation provides
a measure of the amnplitude 4 perturbed by a non-vanishing e;
the left-right asymmetry is a measure of € once A is known:

the orbit measurements are made before and after the pertur-
bation and subtracted. Any constant offset on the PU's is thus
suppressed. The ultimate accuracy may be evaluated as follows:
even if the model and the measurement have the same parame-
ters, the cross-correlation function will not be symmetrical due
to random measurement errors. This bias will be converted by
the algorithm into a phase advance error.

A ; sin [(n — [k])eAd]
Yy = 08 |hAE — ety — (n — 1k — 1)es Uees B AR L =t S
k) S T L (k28 = 2ewg = (n — [k] = 1)eA8 + {2keAB}] AR

°

sin{ne8]

A = QNC(O)(C()S [269/'0 + (n - 1)6.39} S iAD

A (sin [(n —1)e6)

CihH~-C(-1) = sin [eAf)

n—1

sin[(n — 1){A8 + eA8))

— cos [[K]A8 + 2¢0 + 26 + (1 = k| = 11AO(1 + €) - {2keAd}] -sin [(n ~ |K])AB(1 + )]

— €cos$ {2!{*0 + 2etdg + (n — 1IAG(] + 6)‘;

sin [A6(1 + ¢€)]

.1 sin[nA(1 + E)])“
sin [A8(1 + ¢))]

sin [w’vg + (n — l)eAH] sin [A(i + fAG] -

sin [Af + eAf)

Iterative algorithm

The phase advance per cell results mainly from two quantities
which are accurately measured, namely the quadrupole gradients
and the cell length. The expected discrepancy ¢ between model
and measurement cannot be large. It is thus legitimate to develop
the equations (11,12). The small parameter is nAfe. (in the case
of the LEP injection test, its value was of the order of 0.01, i.e.
small compared to 1). It is further legitimate to neglect in (11)
the terms dependent on Afe which are n times smaller than the
small parameter. One obtains in this way a decoupled system of
linear equations:

1
A=2C > (1
Co (l—k‘ (13)
1k C{l)-C(-1) o
0 o=
€ I DAGsnAl ks { ¢y (14)
with
__cos[2¢g + (n — 1)A8)sinnAf
e nsin Af
and
Afsi — DA sin |29 + (1 —
by = 20 sin AG — Afsin [(n — 1)A8) sin [2¢q + (n — 1)AE)

(n —1)sinAf

A first evaluation of (14) allows a readjustment of the model. A
second evaluation yields the accuracy. One is thus naturally led
towards an iterative algorithm that is stopped when the required
accuracy on ¢ is reached.

Estimate of the accuracy

The method is primarily limited by the PU’s resolution. Indeed
a pure oscillation may only be obtained by subtracting two mea-
surements: some kick is excited to perturb the beam trajectory;

sin [2v0 + 2etfo + (n — 1)(A8 + €Ad)) sin [fae}) (12)

Let < édzp;r > be the rms PU reading error. The accuracy of
each point of the pure betatron oscillation is thus

< 0z >= \/5 < &:p(f >

The cross-correlation between the model and the noisy signal
is obtained by adding the term éz,/4 to the last term of equa-
tion 9. The mathematical expectancy of the cross-correlation
function shows no bias. Its rms error is obtained after the usual
approximations of statistics:

< Oy > SH2P0 >
Jn = |kl

Neglecting small factors in (11) and (12), one gets the accuracies:

(13)

< A> 2 <bzpy >
A Vvn A (16)
1 2v2 Szpy
< 2> V2 SOV 2 g7y

Afsin A8 (n— 1)vn—1 A

The denominator of (17) shows that the accuracy of this method
improves very quickly with n, as compared with other techniques.
Under the conditions of the LEP injection test, i.e.

A Ab =7 /3

15 mm
n 11 < zpp > 0.1 mm

~
=
~

equation (17) yields:
< g > 0.05°

For the LEP commissioning, the full octants become available,
Le. n=30. which yields:

< pu>m0.01°

If the gradient changes from cell to cell, it introdurces a ;-
beating which limits the accuracy. A phase advance modulation

{11)



of 1 % would produce a 3-beating of less than 1 %. For a be-
tatron oscillation amplitude of 15 mm, this effect would double
the quoted uncertainties. There are yet other sources of inaccu-
racy.such as the random errors of the PU's calibrations,... that

are likely to limit the accuracy of the method.

Results of the LEP injection tests

The LEP injection test was carried out in a special optical config-
uration. The sextupoles were not powered and both quadrupole
chains QF and QD were connected to the same power supply.
Ignoring the very small contribution of the dipole magnets to the
focusing, the horizontal and vertical phase advance should have
been be the same, even if the quadrupole integrated gradients
would be different from design. The nominal phase advance per
cell was 60°.

In order to verify it, pure betatron oscillations were measured
by subtracting two trajectories excited by an orbit corrector mag-
net: between the two measurements, the sign of the kick was re-
versed so as to maximize the aceuracy for a given kick strength.
This procedure cancels all systematic effects, either due to the
imperfect closed orbit or to de PU offsets.

About 12 measurements were made in each plane, to check the
reproducibility and accuracy of the caleulation. On each data
set, the algorithm iterated typically four times. Averaging all
the results obtained yields:

pr = 5848 <y, > 0.12°

py &~ 61.79° < pg > 0.20°

In fact, if one discards a few suspicious readings, the rms phase
errors become respectively 0.07° and 0.13°, i.e. two to three times
the theoretical prediction. The discrepancy may arise from a too
tight estimate of the PU accuracy, a small non-reproducibility of
the injection coordinates or from some ripple of the 8 function
which has assumed to be the same at each PU.

The betatron phase shifts with opposite signs in the two planes
were later attributed to a thin layer of magnetic material (Ni)
used to bond the lead shield on the aluminium vacuum chamber.

Results of the LEP commissioning

An on-line program had been prepared to face commissioning
difficulties, with some extensions to measure as well the betatron
tunes (phase advance per turn) if the beam circulates for at least
two turns. In fact, the commissioning of the LEP optics went
smoothly. The betatron phase advance measurement revealed
this time only small deviations from the design values (fig. 1).
The phase advance is found to vary from arc to arc by a small

amount. This is not unlikely, as the parasitic gradient is expected
to have some distribution due to the manufacturing tolerances of
the vacuum chamber. Due to the operational tunes being slightly
different from the theoretical ones, the average phase advances
should have been:

e = 59.90° i, = 59.87°
while the average measurements gave:

py = 59.92° iy = 59.65°

The agreement in the horizontal plane is very good. The small
discrepancy in the vertical plane (0.2°), if significant, shows that
our optical model can be improved.
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Figure 1: Measured and expected phase advance per cell in the

LEP arcs

These measurements were carried out using the closed orbit
instead of the betatron oscillation. The formula should then be
slightly modified by a constant phase term: the pure closed or-
bit oscillation is indeed shifted in phase with respect to the or-
bit corrector used to produce the perturbation. Missing pick-up
readings were merely assumed to give zero readings.
elaborate treatment showed no significant change on the results.

A more

Conclusion

The cross-correlation technique allowed to measure the phase
advance per cell with an unexpected accuracy, given the small
amount of data collected during the injection test.

Compared to other techniques like fitting or FFT followed by
deconvolution, this method appears more economic in terms of
computation, which may be of interest for control systems. It
further directly yields an estimate of the accuracy. It however
requires a regular sampling of the betatron oscillation, which is
typically the case of the accelerator arcs.

The method can be extended to yield more insight into the
optics:

o Cross-correlating a betatron oscillation observed over two
successive LEP arcs allows the measurement of the betatron
phase advance between the arcs, i.e. in the straight sections,

e Cross-correlating a betatron oscillation observed over two
successive turns allows a fast measurement of the betatron
funes.

¢ The measurement can be repeated with an off-momentum
beam, beyond the damping aperture. This should allow a
more accurate measurement of the chromaticity.
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