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Abstract The strong systematic multipolar components 
which are present in the magurtic field of superconducting dipoles 
may dramatically deteriorate the dynamical behaviour of the par- 
ticles circulating in the Large Hadron Collider (LHC), especially 
at injrctiou energy. 

Here we review two possible methods for the compensation of 
thrse spurious systelnatir fields: one in which correcting windings 
are placed iu the dipole gap, and the other in which lumped 
multipoles are located near the main quadrupolcs as well as in 
the middle of each half-cell (Neuffer approach). 

We will compare their performances and demonstrate that both 
of them improve the stability of the particle motion in the LHC. 
Furthermore, we will show that different strategies can be fol- 
lowed to set the strengths of the lumped multipolar correctors, 
all leading to similar, satisfactory results. 

Practical considerations have theu determined the choice of the 
lumped scheme for 1 bra c~,rnpcnsation of the systematic multipolar 
errors in the LAC. 

The Systematic Errors 

The systematic components of the spurious multipolar fields in 
superconductiug dipoles are mainly due to persistent currents in 
the superconductor: iron saturation, and coil deformation under 
the effect of electromagnetic forces. The relative magnetic field 
is defined by 

B, +iB, = B,F(& + i-,CF)“-l, (1) 
i=l 

where 
B, is the dipole field in the vertical direction, 
R is the reference radius, 
b, and a, are the normal and skew multipolar coefficients, 
2 x R is the number of poles. 

Two sets of expected values of systematic multipolar coeffi- 
cients have been worked out by the CERN LHC Magnet Team 
over the last few years: the first set was reported in Table 5.4 
of Ref. [I], and an extensive study on the effects of such errors 
and their compensation both at injection and at collision energy 
is included in Ref. 121; the second set, rather more pessimistic 
about the higher order components, has been made available 
just recently[3], and here we will evaluate the performancrs of 
the machine under these new, more stringent, conditions. 
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Table 1: Multipolar (!oefficients for Systematic Errors (in units 
of 10m4 at R, = 1 cm) at injection (B, : 0.56 T) 

Only the normal c.oluponents of systematic errors are taken 
into account in Tablr 1, and the quadrupole component, mostly 
due to the saturation of the yoke, is neglected because it can be 
substantially reducetl by proper shaping of the iron, and finally 
corrected by the tuning quadrupoles. 

The octupolar coefficirnt, bd, changes sign every nc-tant, owing 
to the two-in onr design of the l,HC dipoles. 

The systematic multipoles of Table 1 mainly produce a large 
amplitude- and mon~rnturn-dependent tune shift which results 
in a sensible reduction of both linear and dynamic apertures. 
Ortrlpolr errors mc,stly induce an amplitude-dependent tune 

shift[4], whilst decapole errors give a stronger contribution to 
the momentum-dependent tune shift[2,5]. The higher order mul- 
tipole errors perturb the beam predominantly at the larger anl- 
plitudes, mainly affecting the dynamic aperture, as will he seen 
in thv comparison of the results obtaiuetf with thP two differrut 
sets of systematic errors. 

LHC Lattice and Compensation Methods 

The LHC lattice used here is that of Ref. [fi], retuned at 
Q. : 70.28, Q, = 70.31. It is made of eight arcs and eight in- 
sertions, each of them including two dispersion suppressors and 
one long straight section. An arc contains 49 regular half-cells 
with four dipoles each, and a dispersion suppressor contains four 
pseudo-half-cells with three dipoles each. Therefore there are 
1760 dipoles in total, and all of them are 9.54 m long. Sextupcbles. 
powered in two families, are included to correct chromaticity and 
are placed uext to the quadrupoles of the regular cells. The in- 
jection optics considered consists of four equal insertions with 8’ 
values fixed at /ZI: = /$ = 6.5 m, placed in the even straight sec- 
tions, one dump-dedicated insertion in straight section No. 3, and 
three identical insertions with & = 0; = 4 m at the interaction 
point in the other three odd straight sections. 

The main purpose of any correction scheme must be to reduce 
the tune shift to a sufficiently low value over a sufficiently large 
range of amplitude and momentum. 

Our aim here is to find a satisfactory compensation for sex- 
tupolar, octupolar, and decapolar components, and to evaluate 
the effects of the higher order ones (14-pole and 18-pole), possibly 
indicating a maximum tolerable value. 

Our quality criterion, inspired by the operational experience 
with the pp Collider at the SPS is that: 

IA&J < 0.005 !2) 

for a<+, =6/Z if AP/P = 0 
or for a ” r”’ - To/ > i ’ /z if np/p FO 

where: 
b ‘- 20 mm is thP radius of the vacuum chamber, and at injection 
b/2 corresponds to the amplitude of a particle at 10a of a 15rr mm 
mrad emittancc beam at a maximum-fl location in the regular 
cell, 
S is the bucket half-height; at injrrtion 6 1.25 x 10 3. 

Correction by Bore-Tube Windings 

Additional multipolar windings placed in the bore of each dipole 
are the most natural way that one can think of to cancel system- 
atic errors, but not always the easiest from the hardware point 
of view. In particular, in the case of the LHC superconducting 
magnets, in the dipole bore tube there is not enough space for all 
the multipolar coils (6-, 8- and lo-polar) one would like to install 
to achieve a really “local” error compensation; instead, at most 
one of them may be foreseen per half-magnet, therefore allowing 
only a “quasi-local” correction. 

Amongst all the possible arrangements achievable with only 
one kind of corrector per half-dipole, we have selected the one 
in which sextupolar windings are implemented in every dipole, 
whilst octupolar and decapolar windings are implemented every 
other dipole, alternatively, and the strength of each multipolar 
corrector integrated over a rell equals that of the corresponding 
systematic error. 
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The compensation for the sextuyolar errors is obviously “more 
local” than for octupoles and drcapoles, and indeed, at larger 

back to the original bare machine shape (Figure 28) by thee atction 

amplitudes the tune shift starts to increase more rapidly; never- 
of the lumped correctors (Figure 2~). 

theless, this simple setting, without any further optimization, 
The three different optimization methods arc’ shortly described 

allows the dynamical brhaviour of the machine to by improved 
below. We should point out that since the sextupolrs next to 

enough to largely satisfy the critcsrion of Rq. (2), and thus to 
the main quadrupoles are also chromaticity sextupoles, the first- 

consider this correction method well acceptable. 
order compensation of systematic sextupolcs is always (done at 
the same time as the correction of chromaticity. 

Correction by Lumped Multipoles 

The significant problems prrs?nted by tlir prartical implemrn- 
tation of the bore-tube windings in the T,HC two-in-one dipoles 
pushed 1~ tc\ explorr a different correction technique; based on 
lumped correction elements by which, instead, a “global” con- 
pensation can be achieved. 

Different dispositions of rorrrction rlrrnrnts can hc. thought of, 
and, of course, the larger thrs uumber of cnrrectors, the bcttpr 
the compensation. The most efficient arrangement with a small 
number of elrments srems to be that proposed by Neuffer[‘i’J, and 
we have chosen to implement it in the regular cells for the com- 
pensation of the sextupolar, octupolar, and drcapolar systematic 
field components of the LHC dipoles: to correct each kind of mul- 
tipolar error to first order three elemeuts per half-cell are used, 
two of them are plac.4 at the ends of the half-cell and one in the 
middle. Actually r11tl corrrctors of contiguous half-cells can be 
combined, giving a total of four correctors per cell: two, powered 
together (except for the srxtupoles), next to the cell quadrupoles, 
and two, also powered tijgethrr, halfway between them. 

Ddpa “nvmh. *quahpQ-. mwc- beq w-z&qsb anlat”~ranriaBoy:tam~~. 
S+lYclXT- rrtuw. - IM lwh dor, s+o+D-mbkrl a.iupo*. aupa m-4 hcqd4. oonr;ta 

Figure 1: Layout of the LHC Standard Half-Cell 

The realistic layout of a standard half-cell including also th? 
lumped correctors is shown in Figure 1, together with its lattice 
functions. The three central correctors are combined in one single 
block of length I : 1.18 m, which contains, from the outside 
going inwards, sextupole, octupole, and drcapole windings. Thr 
correctors close to the main quadrupoles are instead split into 
two blocks: the sextupole and the decapolp are in the same block 
of length ! = 1 m, whilst the octupole is enclosed in the tuning 
quadrupole which is 0.72 m long. 

Three strategies can be employed to set the strengths of the 
lumped multipoles at their optimum valurs, two minimizing thr 
amplitude-dependent tune shift, and the third minimizing the 
momenturn-deprntl~llt tune shift; in spite of the very different 
starting points, the three approaches give fairly similar results, 
producing three sets of correctors whose values are rather close to 
each other; they all allow thus condition of Eq. (2) to be satisfied, 
and the compensation srhrrw to be considered adequate. 

Figure 2 gives a very impressive representation of the power 
of the lumped correction method: particles of nominal momen- 
tum have been tracked for 100 turns at injection with starting 
coordinates on a regular nlesh in the transverse physical plane 
X-Y at a focusing quadrupole (8, = 169 m, 0, = 30 m), and thp 
horizontal and vertical tune shifts are plotted against transverse 
coordinates for (a) thr ideal hare LHC (chromaticity corrected), 
(h) the machine with systematic errors and only chromaticity 
correction, (c) the machine with systematic errors and lumped 
multipole correctors. The effect of the systematic errors is evi- 
dent in the strong distortion of the tnne surfaces in Figure 2h; 
yet, these curves arc almrjst perfectly smoothed out and brought 

Amplitude-dependent tune shift minimization The 
first set of correctors, called SjnlUsoll~~~q.c_t~~~, was obtainedI?! 
by minimizing the amplitude-dependent tune shift by means of a 
“trial and error” tracking procedurr. Particles over a wide range 
of amplitude were tracked, starting along the diagonal, the hor- 
izontal, and the vertical direction in thh transverse space X-Y 
to simulate a round, a flat horizontal, and a flat vertical beam 
respectively; the optimization ww tlcrnr implementing the sys. 
tematic error components one by one and tuning their correcting 
&ments: sextupolar errors were corrected with sextupolar and 
octupolar elements, octupolar errors were corrected with octupo- 
lar elements, and decapolar errors were corrected with decapolar 
rorrcctors; the quadratic sum of the horizontal and vertical tune 
shifts at half of the vacuum chamber radius along the three direc- 
tions was minimized, taking care that the behaviour of the tune 
shifts was monotonic along any direction and that up to 3/4 of 
the vacuum chamber their values were still below 0.01. On the 
strengths of (he correctors the constraint was applied that the 
integrated gradients of the horizontal and vertical octupoles (de- 
capoles) were identical, and, according (0 the Simpson’s Rule, 
they were just half of the central octupole (decapole) gradient. 
As a first guess the corrector strengths were fixed in such a way 
that their integrated gradient over one cell was equal and op- 
posite to the integrated gradient of the relative systematic mul- 
tipolar field. The dependence of tune shift on momentum WIGS 
not considered, but only checked a posteriori: as will be shown 
in the next section, this scheme of correction is efficient also for 
off-momentum particles. 

An alternative set of correction multipole strengths, called here 
Ili_ormal Forms Correctors, was calculated using a method which 
employs normal forms techniques to cdmpute the quasi-invariants 
of the non-linear motion and to minimize the tune shifts. By 
this method, which is extensively reviewed in Ref. 181, the ron- 
straint on the ratio of the integrated gradients of the central 
and lateral octupole (decapole) is removed, whilst the constraint 
on thr equality of the lateral elements, which in principle could 
be released as well, has been retained owing cost considerations. 
Although the minimization is only done on the lower order corf 
ficimts of the tune shifts, this method has proved to give reason- 
ably good compensation for the tune shifts over a large range of 
amplitudes and momenta. 

Morrlenttlrn-depelldt!Ilt tune shift miuinkizatiou X 
completely different approach was used to compute the strengths 
of the NETLinear Chromaticib..correctors[5]; the contribution 
to chromatirity from the systematic sextupole errors is mainly 
linear with a small quadratic part, the contribution from oc- 
tupole errors is mainly quadratic, and that from decapole errors 
is mainly cubic. Then, sextupole correctors, including the central 
one? have been used to set the linear part of chromaticity to zero, 
whilst octupoles have been used to cancel its second-order drriva 
tive and decapoles to cancel its third-order derivative. Since only 
two free parameters are necessary for each kind of corrector, thr 
condition that the lateral octupoles (decapoles) had the same 
strength was rrtained. This procedure was applied successfully 
around Ap/p = 0, but the correctors were found to minimize 
rather well the linear and non-linear chromaticities also at very 
large momenta. Furthermore, even if the amplitude dependence 
of the tunes was not taken into account in the optimization, this 
schemv was recognized as being very efficient also at large ampli- 
tudes. 
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Figure 2: Tune shift vs. X and Y in the LHC: a) bare, b) with systematic errors, and c) with errors and lumped multipole corrertors. 

Results 

On- and off-momentum particle tracking has been used to com- 
pare the performances of the local and the global correction meth- 
ods, the latter with its three sets of lumped correctors. In Table 2 
linear apertures based on tune shift and on smear: 

1-L 7-N Sm, _ kNwI1 ti,.=l (‘I- ” I ‘>)’ 
.----------.-, I = I,,i, (C-S inv.), (3) 

<- I :J 
N = No. of turns, 

and the short-term dynamic aperture are displayed for these four 
configurations of the LHC, and compared with an ideal bare ma- 
chine and with the machine with systematic errors and no com- 
pensation other than for chromaticity, for the two sets of errors 
available. 

Two Seta of Errors - Different Correction Schemea 
APERTUR.E with DiKerent Criteria -~ Injection Round Beam I 

Ampiitudcs in mm 10 25 uana at a Focwu~~ Qundrupulr (ii. 169 ul) 

/ ~~- --I ~---LINEnR;;&&,RE I-;,;;&I 
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Table 2: Linear and Dynamic Apertures 

The change of the ort,upole error sign from arc to arc in the 
1990 data of Tahlr 1 is henrfirial. as the avrragr effect of ba on thr 

machine becomes smaller. We see that all the correction schemes 
allow recovery of most of the linear aperture of the ideal bare ma- 
chine and fully satisfy the criterion of Eq. (2), but they cannot do 
as much for the dynamic aperture. The detrimental effect of the 
new b and & is also evident: they strongly lower the power of 
all the correcting methods, substantially equalizing their perfor- 
mances; both linear and dynamic aperture are deteriorated and 
the effect is particularly severe for the off-momentum particles. 

The correction has been tested also at collision energy(Z]: the 
tracking results show that the method is still applicable and that, 
owing to the smaller dimensions of the beam, the problems are 
less critical. The strengths of the correctors at high energy are 
those determining the specification displayed in Table 3. 

1 
._ ..-~.. .- ._ __ ._ 

Sextupole Octupole 
.--D~o~e.. ..l 

-.. e(m) B(*)(Tm-*) (Cm) Bt3)(Tmw3) I(m) B(4’(Tm-4) 
Lateral 1.00 4500 0.72 1000d0 1.00 32 x1os 

1 Central_il.18 650 11.18 75000 il.18 60 x10’ j 

Table 3: Recommended Gradients for J,umped Correctors 
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