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Absiract

In this paper, the longitudinal coupling impedance of a
smooth foroidal beam tube is derived. By treating the torus
as a slow-wave structure, the well-known method of describ-
ing the impedance in terms of cavity resonances can be used.
A simple analytical expression for the coupling impedance of a
toroidal beam tube with square cross section valid in the low-
frequency limit is obtained. The results {rom the present study
are compared with previously published solutions and qualitative
differences are pointed out.

Introduction

The longitudinal coupling impedance of a toroidal beam
tube is a topic of long standing. A general formal treatment
of the fields induced by a beam in a toroidal chamber was
published by van Blade!l, however without apparent impact on
the subsequent studies.? The impedance review paper by Faltens
and Laslett® at the 1975 ISABELLE Summer Stady summarized
Neil's doctoral dissertation® on this topic and pointed to this
potentially important source of coupling impedance.

Any electromagnetic wave in a straight beam tube propa-
gates with a phase velocity faster than light. In contrast, a curved
beam tube acts like a slow—wave structure allowing synchronism
between particles and wave resulting in coupling impedance reso-
nances above cutofl. Whereas Faltens & Laslett focused on these
resonances, Zotter addressed the low frequency end and showed
that a curved beam tube has essentially the same space charge
term as obtained from the straight—fube analysis.? The renewed
interest in this topic was demonstrated at the 1987 Workshop
on Impedance Beyond Cutoff,>® by the papers of Warnock &
Morton® and Ng.®

Recently, Ruggiero conjectured the possibility of a high Z/n
near cutoffl resulting from the curved beam tubes in RIIC
dipoles.? This was discussed at the 1988 Workshop on the RHIC
Performance,*® however papers by Ng & Warnock discount
the possibility of a significant impedance below the resonance
region.’?

The analysis of a toroidal beam tube demands non-routine
mathematical skills, A torus with circular cross section re-
quires a toroidal coordinate system and leads to non-separable
differential equations.* A rectangular cross section allows exact
analytical solutions in terms of Bessel functions. Extracting a
low~frequency approximation involves however the use of asymp-
totic expansions and cancellation of large terms rendering the
results suspect.

Most of the mathematical difficulties are avoided m the
present paper by using the well-known method in which the
coupling impedance at all frequencies is expressed in terms of
its resonances.!? The low—frequency appreximation is then de-
termined with sufficient accuracy by the lowest resonance alone.
To achieve simple results, the analysis is limited to filamentary
beams of extreme relativistic particles, however radiation effects
are neglected. Numerical results are obtained using Bessel-
function routines in the SLATEC program library.

* Work performed under the auspices of the ¥.5. Department of Energy.

Torus with Circular Crosa Section
A qualitative estimate of the coupling impedance Z/n in a
torus with circular cross section (beam tube radius b bending
radius ) can be obtained by assuming that the beam induced
fields are essentially TMp;~like.*® Wave propagation is possible
above cutoff

. R
Tigo = J017-
b
and synchronism, ie. v = ¢ occurs at the mode number

ng. In first approximation, the phase velocity is not changed
by the curvature!? but a change similar to curved rectangular
waveguides®*® must be expected, implying
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Assuming a lossless structure, the coupling impedance is then

given by
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with the usual definition (in natural units ¢ = g, = 1)
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where W represents the stored energy per unit length and the
cireular frequency at synchronism

wy = ns /1T
It follows that
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The curvature effect contributes an inductive impedance of the
arder of b2/ R? which is essentially constant up to frequencies well
above cutoff,

Torus with Square Cross Section

A beam centered in a straight waveguide with square cross
section, as shown in Fig. 1 {horizontal width w, vertical height
f = w) induces TMy;-like fields. Since the phase velocity is
greater than light, no synchronism is possible. The field compo-
nents (z, r, #) of the two lowest waves in a torus with square cross
section, here referred to as Hy; and By mode, are listed in Ta-
ble I and compared with the TMy; mede of a straight tube. Note
that the H;; and B3 modes revert to the so—called Longitudinal-
Section modes in the straight waveguide which in contrast to the
degenerate TM1;/TE1; medes are orthogonal and thus stable in
the presenca of perturbations such as losses or curvatures.”

In Table I the common factor e /™e/ is suppressed. The
sinus—like combination of Bessel functions is defined by

§(kr} =
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and the cosinus—iike combination
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Table I: Wave propagation in beam tube with square cross section™.

™, LSE}; Hy, £y,

E, = —sm(z cos (i 0 0 (v — €2 C(kr)
E, = —cos(x sin (r V1 + 2eZsin (z vlriS (xr) e\/mC’(nr)
Eg = jcostz 2¢cos V1 + 2e2cos(x vVfo? < €2 (k1) e2C (kr)

H, =cos(:z V14 262 sin (14 €%)sin(z (v? — €8) S (rr) 0

I, = —sin(z V1 + 2e2cos (r e? cos (z ev/v? < €8 (xr) vEC (kr)

Hg = jsintz 0 esin (o e2S(kr) v\l = C! (k1)
* The common factor e~#"@ ¢/ guppressed; ( = r/h; e =CR/n.

where the prime denotes the derivative with respect to the argu-
ment. The frequency Q is given by Q° = #2 + (* with the vertical
wave number fixed by { = x/h and the horizontal wave number
# by the boundary condition S’ (}C”RQ) =0and C (NERO) =0

The phase velocity at the center of the torus (z = 0,r = R) then

fullows from 3
) (RR) (CR>2
e = | — + | —
n n

Asymptotic Expansions
Although not required, it is convenient to replace the Bessel

functions by their principal asymptotic forms for large n in terms
of Airy functions leading to

S{(xr) = Ai(p)Bi' (p:) — Al () Bi(p)

and
21/3
Inspection of Table I suggests that the low-frequency cou- S (kr) =~ -5 { Al (p) Bi' (p;) — Ai' (p) BI' (p)}
pling impedance is dominated by the H;j mode. An approximate n
, - i —~ 1is oi 6 .
value for the mode number n, at which v = 1 is given by with p = __%3? (kr — n).

R\
n# ~ 2057 (-—)
w

In RHIC R = 24324 m and w = 7.29 cm resulting in the
approximate n

Furthermore, taking into account the relation

n
Momz -
R
H =~ 0.4 x 10° which differs substantially from

the exact value nfl = 1564 x 10% obtained with the SLATEC
routines. For comparison, the TM,; cutoff mode number is

nIM = /orRjw = 1.48 x 10,

The synchronous coupling impedance follows to be

(_Z_ _81R R S”(kR)
nQ/ n T nh [ S (xr)dr

The functions S(xr) and §' (k1) are shown in Fig. 2 for the RHIC
geometry from which
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where ¥2 = (1~ »2) " one can approximate
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with = r — It and € as defined above.
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and the low-frequency coupling impedance
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in good agreement with approximate results for the torus with - 405
circular cross section. \
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Fig. 2: Functions S(x7) and §'(sr).
Fig. 1: Toroidal beam tube geometry.



Discussion

It is instructive to compare the results in this paper with
previous publications. Zotter! gives an expression for the space
charge term of a beam (radius a) in a toroidal beam tube (radius
b} in terms of associated Legendre functions from which one
obtains the low—frequency approximation

Z .1 | b + lnl R?
o= N A = o e | = e
n T e TR 2 ar

As expected, the space charge term vanishes for extreme relativis-
tic energies, v = 1; however in this approximation, no curvature
term is obtained.

Ng and Warnock!® have derived a curvature term which sur-
vives at v = 1. Their expression has an apparent similarity to
the present results but differs qualitatively due to its capacitive
character at low {requencies and due to the (n/nm)2 frequency
dependence which is stronger than the present (n/n‘)2 depen-
dence.

Either result allows the conclusion that the curvature effect
will represent a negligible contribution at frequencies up to the
vicinity of cutoff. As to future studies, it would be desirable
to obtain a more exact expression for the phase velocity of the
TMoi1-mode in a torus with circular cross section.
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