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Abstract: Multi-cell linac structures such as side-coupled
linacs or the recently proposed slotted linac cavities for TeV
colliders often do not have cylindrical symmetry. Since the nu-
merical analysis of very long waveguides becomes too expensive
in terms of CPU time, it is an appropriate approximation to
consider the structure as infinitely long. In this case, it suf-
fices to analyse a single cell provided that one allows for periodic
boundary conditions. Such capabilities have been added to the
frequency solver in the new release of the MAFIA codes. Several
examples show the usefulness of this new feature in MAFIA.

I. Introduction

In order 1o achieve high accelerating voltages in linear ac-
celerators, it is necessary to use many cavities in a row. As of
onsist-

today, it is impessible to exactly analyze such systems
ing of (very) many identical cells if the unit cell does not have a

simple geometry. But except for the ca

vities near the ends of the
structure the fields are the same as if there were infinitely many
subcells. It is therefore very useful to have a computer code that
allows to analyze arbitrary periodic waveguide structures. Such
a code has been added to the MAFIA programs [1]. The finite
difference method used in these codes makes almost no assumyp-
tions about the problem geometry and allows the analysis of
very general problems. In particular, the unit cells may be filled
with arbitrary three-dimensional material distributions. Tt will
be shown how, for example, the loss parameter of a quasiperiodic

structure can be calenlated.

II. Theory

By Floquet’s theorem, the fields supported by periodic struc-
tures are periodic themselves up to an exponential factor. To he
more specific, let us consider a structure periodic in z and having
unit cells of length L. In the following a time dependence of ¢!
is understood and suppressed. Then the electric field will have
the form

E(x,y.2) = Ep(z,y,z)e% (1)
where Kp is some periodic vector, i.e.,

o2y, 2+ L) = Ep(a,y, 2) (2)

and k is the wave number. The upper (lower} sign in equation {1)
corresponds to a wave traveling in positive (negative) z-direction,

Because of eqn.(1), everything is known about the field in a
periodic structure once the field in a unit cell 18 known. The
problem is, therefore, to solve for the electromagnetic fields in a

unit cell subject to the bourdary condition
E(Tuyazmuz) = E‘IE, y>3min)eijw (3)

where by definition v 1= kL, and zp,i. and 2., =
the boundaries of the unit cell chosen.

Zmin + L are

method
Especially

It is obvious that one has to use & general numeri

if one aims at studying general periodic str

finite difference techniques have proven very useful in this re-
spect. In the FIT (Finite Integration Technique) method used
in the MAFIA program codes, the three-dimensional volume in
question is covered by a grid {2, 3]. Thus, the volume is divided
up into a set of elementary cells which are right parallelepipeds
il & rectangular grid is used. As shown in I'ig. 1, the electric
field components are allocated at the mid-points of the sides of
the rectangular cells and the magnetic field components at the
cenler of each face, This defines a dual grid with the origin of
each dual cell lying at the center of an original cell. The mag-
netic field components are allocated on the dual grid in the same
way as the electric field compenents on the original grid. By this
allocation, the transition from ore cell to the next only invelves
continuous components. This erables one to fill each cell with
an arbitrary material without having Lo worry about contimuity

conditions. - :
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Figure 1. Geometry and alocation of the fleld componerts for

the FIT method

On the grid, Maxwell’s eguations in their integral fo

are
discretized by a simple linear approximation to the line and sur-
face integrals. For RI resonator problems, in which the solutions
of the homogeneous Maxwell equations are searched for, the al
gorithm leads to a matrix eigenvalue problem of the form

S

Ae = (Zh3¢ (4)

[

We consider only lossless materials, and then A is a real symrmet
ric matrix. w denotes the angular frequency and ¢ the velocity
of light in vacuum. The vector € contains the square roots of
the electric energy densities associated with cach of the electric
field components allocated on the grid. The reason for choosiug
the energy density as unknown instead of the electric field itself
is that, in the first case, the matrix A is symmetric whereas this
would not be true in the latter case.

In order to treat a periodic structure, the volume of a unit
cell is discretized and the eigenvalue equation (4} ix sel up as

usual. In this process, it has to be taken care that integrals over

field components allocated at the periodic boundaries of the grid
are calculated properly. Any part of an integral that would have
to be performed outside the grid is substituted by an integral
calculated at the other end of the grid. Once the matrix eigen-
value equation has been set up, the periodic

y of the problem is
used to eliminate all field components allocated at z = z,,.. by
using the boundary condition (3). Thus, if the grid consists of
N, planes perpendicular to the direction of periodicity, the fields
of only N, -1 planes are solved for. This procedure vields a new
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matrix equation of the form

7'y e W - 5
Bé = (=) (5)
¢
where 3 is a complex Hermitian matrix. The eigenvalues {w/c)*
will still be real, but the e1
eral.

2nvectors ¢ now are complex in gen-

Instead of solving eqn.(3) directly, it was chosen to transform
it into the equivalent real problem

R{BY —S{B} Y [ R{D) ) e (™M ) (6]
S{AY R{B) S{er ) e sy
Note that the malr

ix on the left hand side of this equation 1s
mmetric, thus giving real eigenvalues and real eigen-

real and sy
vectors. The eigenvalues are degenerate, however, because the
complex conjugate of egn.(5) leads to the same real problem as
the original equation. In view of the Floquet condition (1), this
means that the solution of the real problem will yield both the
forward and the backward traveling waves at the same time.
From a log

2l point of view, it would be advantageous if one
could choose a frequency (independent variable) and calculate
the wave nuribers of the waves at the frequency chosen. But &
is lndden in the system matrix, and the above approach would

roean that a norlinear eigenvalue problem has to be solved, For

the preparation of dispersion curves it is therefore necessary to
first choose sorme k and then calculate the corresponding fre-

gquencies as the eigenvalues of a linear eigenvalue problem.

i the design o inacs one is particularly interested in the loss

parameier  which describes how well a given structure couples

energy Trom an RE resonator mode to a passing particle bunc!

For a structure consisting of N identical cells of length L cach,

the totz] complex accelerating voltage seen by a particle moving

as speed v o= Ao e along the trajeclory v o= @ == p,, 2 18
given by
) N-L (R ’
Vi = /U By op, b P de (7)

where W is the phase of the RF oscillation at the time when the
particle enters the structure. The total field energy stored in the
cavities is

NL 6 - ) _
En = / // = E{r ¢, 2)|*dAd: (8)
Joo JJag 4

with A(2) being the z-dependent {periodic) crc

e
structure. The loss parameter xy is now defined by

The quasiperiodic structure supports waves that have a phase
{ P
advance per unit cell of

no=12,..2N . (10)

/ %

YNy =T 52,

" N

By treating such a structure as infinitely long but using only

phase advances obeying eqn.(10}, a straightforward calculation
shows that the loss parameter is equal to

1

AN R (11)
where ;
wl

= (12

o= (12)

and &y is the loss parameter associated with a single unit cell
of the tnfinite periodic structure. It can be calculated from the
knowledge of the field inside a unit cell by setting N = 1 in (7},
(8) and (9).

If a particle moves with the same velocity as the phase of the
electromagnetic wave traveling down the periodic structure. the
angle a vanishes, and eqn.(11) simplifies to

wn = Nwy for synchronism between wave and particle . (13)

One can also see from {11) that xn becomes arbitralily small
il N gets very large and o is not zero at the same time. It
is therefore important to design a multi-cell linac structure in
such a way that the phase velocity of the accelerating mode
matches the particle speed very well. For uitrarelativistic parti-
cles like electrons or pos

trons this means that the accelerating
mode must have the phase velocity c.

I Examples

(1) S-band linac structure:

The first example deals with a SLAC linac structure consisting
of 84 cells. Although the cells are not identical, the taper is so
amall that one can take the center cell and consider it as part of
an infinite periodic structure. In a first approximation, this will
give the dispersion curves of the real structure. Fig. 2 shows the
discretized version of this center cell where only 729 mesh points
were used. The dispersion carves for the lowest monopole and
dipole modes are shown in Fig. 3.
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Figure 2: Discretization of one quadrant of an S-band cavity.
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These results have been compared to calculations with many
more points and are accurate to about 1%. On a SUN SPARC
workstation, the CPU time needed to compute the first few
modes was less than 3 minutes. This shows that it is possi
ble to produce dispersion curves quite fast if there are not too
many mesh points needed to model the geometry in question.

(2) Backward wave structure:

Now consider & case where there are coupling slits in the dia-
phragms separating the different cavities (Fig. 4).
lead to an inductive coupling of the fields in neighboring cells
which has the interesting effect that the structure now supports
backward waves {i.e., waves whase group and phase velocities

These slits

point in opposite directions) of low order. The dispersion dia-
gram in Fig. 5 shows that the lowest modes and in particular the
accelerating mode are backward waves.

5{_,\'1\\

‘e
=

<) 3?“’('(5;1\1'1\

Figure 4: Discretization of one quadrant of a unit cell of a back-
ward wave structure.
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In the above calculations, the mesh grid consisted of 4446
points. Again or a SUN workstation, the total time needed for
matrix setup and solution {(including all 1/0) was typically 10
minutes for the lowest 7 modes of a given type and a given phase
advance per cell, This means that the preparation of a diagram
like Fig. 7 involving three mode types and 7 different phase ad-
14 hours. Although one can hardly speak
of a CAD tool under these circumstances, it is still possible to
optimize single parameters as the group or phase velocity of a
given mode in a reasonable time.

vances takes about

(3) Wakefield transformer:

The last example deals with a wakefield transformer which has
been proposed as a means of achieving very high voltage gradi-
ents 4]. Fig. 6 shows a section of the transformer. One should
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think that the small surips joining the inner disk to the outer
one play almost no role. Bui the calculations show that this
is far from true. For instance, without strips the fundamental
mode is a forward wave with the passband limits 1.706 GHz
{(p = 0°) and 3.861 GHz (¥ = 180°). But with the small strips,
the passband limits are 1.706 GHz (¢ = 0°) and 0.856 GHz (3 =
1809Y, showing that now this mode has turned into a backward
wave.,

The transformer works with the second quasi monopole mode
at about 4 GHz (which is almost not affected by the strips and
stays a forward wave in their presence). The loss parameter
calculations for particles that move with 4 == 1 give values of
x 22 0.930V/pC for 3 cells and & ~ 3.456V/pC7 for 12 cells. The

-

ratio of the two values is 3.72 which says that the mode chosen

is almost but not quite synchronous with the particles (ideally
it should he 12/3 = 4).

IV. Conclusion

A new code has been presented which allows the numerical
analysis of arbitrary periodic structures. With the help of three
illustrative exarnples it was demonstrated that the program can
be a valuable tool for calculating dispersion curves and loss pa
ramelers even if one deals not with infinite periodic structures
but with systems consisting of a number of identical subcells.
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