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In the region O<r<a , the synchronous wave (i.e. the wave 
whose phase velocity is equal to the particle velocity v 1 is made up 
of two parts: 

The first part, which is a solution of the inhomogenous Helmholtz 
equation, is identical to the synchronous wave in a conducting 
cylinder of radius a. It only involves the wave number k = W/C 

through a radial propagation constant ik / (PY) 

The second part, which is a solution of the homogeneous 
Helmholtz equation, involves k also through a radial propagation 
constant k, which is characteristic of the dielectric: 

Abstract 

A complete study is made of the longitudinal and transverse wake 
fields produced by an ultra-relativistic particle in a dielectric-lined 
structure. If, for use as a wake field accelerator, this structure has a 
relative dielectric constant (between 2 and 3) optimized for 
producing longitudinal effects, it will at the same time produce 
transverse effects; moreover, the peak values of both longitudinal 
and transverse wake potentials per unit length excited by a point 
charge are comparable to those in a disk-loaded structure with the 
same transverse dimensions. 
Note: Due to the lack of space Fig. 2 has been dropped. 

Infinite dielectric-lined structure 

k, = k(qp, - +j” = ;[E,/@ - 1)’ (1) 

The exciting charge Q has transverse coordinates (r’,%) 
In order to shorten the notation we let a I 
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Fig. 1 Infinitely conducting pipe of inner radius h loaded with a 
dielectric having a beam-hole radius 0. A point charge Q moves 
with longitudinal velocity u in the hole. 

where E, is Neumann’s symbol (E, = 1 when m = 0, E, = 2 

when m # 0) and I,(X), K,(I) are modified Bessel functions of 
order m. 

It should be noticed that in contrast to our previous paper [l], E,,, is 

now included in the definition of h’1 (a). 

The longitudinal electric field Ez is a superposition of components 
with m-fold rotational symmetry around the pipe axis. 

<< 1 , the m-component of the second part of E, reads in frequency domain 121: 
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(4) where F=l , A=m(m+l)(~$,+$) , B=(m+l)(&,t~c,) with E:Ie $zz “,zi 

When m = 0 , the weights E, --.!%- 
E,+P,*E,+P, 

must be taken as 1 ,O. 

With E, = n, = 1 a& j3 = 1, the minimum values of (4) are A=2m(m+l) and 8=2 (m+l). 
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where Jm(,v), T,(S) are Bessel functior 1s and H”‘(x) H(‘)(x) m *m are Hankel functions of order m; m=O corresponds to an accelerating mode, 
m>O corresponds to deflecting modes. Equation (3) has also been obtained recently by Ng 131. 

Finally, with the condition 
I i 
5 << 1, (2) reduces to 

(6) 

which is independent of frequency. 
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In the following, we assume that p’ > $ , which means that 
r I 

the velocity of the exciting charge is above the threshold for 
Cherenkov radiation in the dielectric; by (1) this case corresponds to 
k, being real. More precisely, since causality requires that w be 

thought of as a complex quantity (W - j&) with E > 0, k, should 
also be considered as a complex quantity having a small negative 
imaginary part. Therefore , from (5): 

lh D,(k,b) = lim D’, (krb) = 
H,@)‘(k,U) 
H,“‘(k,a) 

(7) 
b-tm b-+m 

Longitudinal wake potential cer unit length of the structure 

For a particle which follows the charge Q with the same velocity u , 

at a distance s behind Q. and at transverse coordinates (r,rp) , this 
wake potential reads 

M’,,, (s) = J-j;; g2:’ .e%;(w) (8) 

With (3) it can be written as 

y, (m + 1)F 
M’,, (s) = y- 

“I 
____, u(s) [p] I&l (9) 

moa2 

where 
u(s) = &j+;y+ 

(i~+~[~~,~(k,b)+~~‘~~(k,b)]~ (10) 

When k, 0, ( krb) and D’“, (krb) may both be replaced 
by (7), so that (10) reduces to 

[ 

-1 
u~,r&-~~~~ej~~ t-$++% 1 (11) In: 

where 2 = k,a , 

IJsing properties of Bessel functions, one can reduce (1 1) to 

i 

-I 

u(x)= H(x) $Irnl& ejzx ;-++B$+ 
I 

(13) 
m 

where H(x) is Heaviside’s unit step function. 
To obtain a formula suitable for numerical computation, it suffices 

to express (13) in terms of J,(I), Y;,(Z) 

The behaviour of v(a) for x + 0 + can be obtained by using the 
asymptotic expansion of the Hankel functions in (11); remembering 
that the integral should be taken slightly below the real axis, this 
yields 

u(.r)=H(x) 1-Bx+ E -?-A T+“’ 
[ PE )“; I 

where, from (4) and (12): 

i?x = (m + I)( E, + Kr)( &,&p’ - I)-’ f 

Theleast fall off of r’ M,,, (s) v,lth s ia occurs when 

(15) 

(E, + Kr )( WU,fi* - I)-+ is minimum. As a function of Ed, this 
happens when 

c, =2 
t4.p’ 

(771 = 0) or E, =-2--+p, 
PrP’ 

(VI > 0) (16) 

For p = 1 and p(, = 1 , this corresponds to E, = 2 when m = 0 

and E, = 3 when m > 0 ; in both case’s it corresponds to A = n7R 

and B=4(m+l) 

The precise shape of U(X) is obtained by numerical integration of 

(13); the results are shown in Fig. 2. It is seen that U(X) changes 
sign (m+ 1) times before going monotonically to zero. 

When B increases, the fist zero of U(X) is steadily shifted to the 
origin, whereas the m subsequent zeros barely change position. 

When h, the integrand in (1Oj has a simple infinity of poles at 
k=+k,, with positive residues R. (the same at k, and - X-J. 

Taking the integral with respect to k slightly below the real axis 
transforms (10) into 

u(s) = H(s) 5 2R, cos 
n=o 

b 
R,>O , --<cd (17) 

a 

The electromagnetic wave front created by the exciting charge Q 
needs some time to be reflected by the wall at r =b and reach the 
test particle at a distance s behind Q, lising (10) it can be shown 
that as long as 

s(E,~,/Y--I)-~ <:2(6-a) i.e. x12 i-1‘ 
i 1 

(18) 
/ 

the test particle does not feel the presence of the outer wall at r=h; 

therefore u(s) does not depend on b in that range of s. In other 
words. within the range (18) of S, the general expression (17) is 
identical to the expression (1 1) valid for any s when h = m: in 

particular. from (14) we always have u(0 +) = 1 and therefore 

c 2R, =1 (19) 
n=rJ 

where [2] Rn decreases as kn-* for large II. All these properties 
have been verified by numerical computation of (17) for bia = 2 and 

3. However, when b is finite U(S) does nor tend to zero when 

s + m; indeed, from (17) u(s) is an almost periodic function of s, 
and as such it comes back an infinity of times to the neighbourhood 
of any value which it has taken since s=O. The physical reason is 
that subsequent reflections from the outer wall keep arriving at 
every multiple of the bound (18). 

When b/a >>l (say b/a >2) , Rn decreases slowly with n; by (19) 
even the fast Rn ‘s are then rather small. 

When b -+ a, all frequencies kn in (17) go to m ; it can be shown 
[2] that at1 residues Rn tend to zero except the first one (n=O) 

which tends to l/2. In that case U(X) reduces to a single cosine 
with unit amplitude. 

Transverse wake ootential Der unit lenpth of the stmxtllre 

The transverse wake potential E,l(~) can be deduced at once from 

the longitudinal wake potential w,~, (s) by using the Panofsky- 
Wenzel theorem : 

P$,(s) = grad, H’,, (s) (20) 

Letting: 
fi’,(w)Eu’grud,N,, (w) (21) 
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we obtain from (9): r- 
F M’,I(,r)= N,, --.- 1 (WP -1): 

E, ?rEJ p (E, + K,) 
u(x) [:rn-‘1 iEi< 1 (22) 

where 

U(X) = 1 u(x)Bdx = H(x) j u(x)Bd,r 
..m 0 

From (6) and (21) we have 

N,,, 1; =-(;)‘“-I($- _:“:;m(cp-rp,) I;i<l (24) 

Within the range (18) of s, the integral (23) is obtained directly 
from (11) as 

[ 

-1 
uc.+ALj+- 2KJx 

2jr -- (jz) 
l-$+;i!$ 1 (25) 

m 

The first m‘aximum of U(X) is slightly less than 1. When B + m it 
tends to 1, at a position of x which is shifted to the origin, whereas 

the 111 zeros of rl(.x) (not counting the origin) are only slightly 
affected by a change in 5. From (22), the peak of the transverse 
wake potential is thus approximately proportional to 

when 

Tile mnximum is reached for the value of F, given by (16). i.e. the 
same value which optimizes the longitudinal wake potential. 

Taking F = p, = p = 1, from (22), (26) and Fig. 2 we deduce that 

Wj 

(23) 
Fig. 3 Geometry of a periodic disk-loaded structure 

This relation applies if the maximum of U(X) is reached before the 
limit (18) for X, i.e if the position s,, of the m~aximum is such that 

(28) 

where x,, is the first zero of U(X) let us remember that Y,,,,, 
depends on B and tends to zero when B + 00. A value of h/a 
smaller than the limit (28) would decrease the upper bound (27). 

As it appears in Fig.2, ~r{.r) changes sign m times before going 
monotonically to zero. 

When s is larger than the bound (181. the reflection at the outer wall 
r=b begins to influence the test particle, and we have to integrate 
(17 1 with respect to .Y. Remembering (12) and (23) this yields 

rr(x)=H(d)BP(F,ii,Pi-lj‘! ” 2 s+;j (29) n 
which is an almost periodic function of s 

When h -+ a, ouly the first term (n=Oj IS left, with 2Ro=l. Since 
all frequencies k,l go to ~0 , the amplitude of (29) tends to zero. 
Therefore, decreasing the thickness of the dielectric lining decreases 
the transverse wake potential without affecting the amplitude of the 
IongitudinaJ wake potential, which simply oscillates faster. 

Comparison with an infiite periodic disk-loaded structure 

The case L=m , i.e. a single cell on an infinite beam-pipe, has been 
treated completely [ 11. More recently Gliickstem [4] derived the 

fEst terms of an asymptotic expansion of ZII, (w) for L finite and 
m=O: it reads: 

z,, (+~~[l+(g-$]: rn=O. $=- (30) 

The corresponding wake potential per unit length of the structure is 
still given by (9), with 

U(s)=H(s) [1+2(%)+$+.,,]’ m=O, s<min(2g,s,) (31) 

where [l] 

.~,=pJ(2h-2aj2 +g* - g (32) 

If we compare (3 1) with (14) for a dielectric-lined structure, we see 
that u(O+)=l in both cases, but the longitudinal wake potential 
drops more rapidly with s in the disk-loaded structure. To make a 
disk-loaded structure efficient as a wake-field accelerator. one must 
have L/g = 1 and g/a as small as possible. 

It is not possible to derive the transverse wake potential by 
integrating (31) with respect to s, because (31) applies in a 
neighbourhood of s=O which is too small ; but we can obtain an 

upper limit for M~,~(s) when dividing the value for a single cell [1] 
by L. The result is an upper bound which is identical to (27) except 

for an extra factor close to E, [2] 

When s>sJ, the reflections at r=b begin to influence the test 

particle, and M’~,(s) is represented by a series similar to (29), 
where (19) always applies. In contrast to the dielectric structure 

however, although they decrease with n as k.-; on the average, 
the R,‘s now fluctuate wildly with n. Depending on bia and g/n, 
some of the first Rll’s may take values larger than the ones for the 
dielectric structure. If the exciting charge is not point like and 
therefore excites mainly the lower frequencies, it can happen that 
the wake potential (longitudinal or transverse) appears to be larger 
in a disk-loaded structure, although for a point charge Q exciting all 
frequencies, the wake potentials reach peak values which are 
comparable in both structures. 
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