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Abstract 

Two-dtmensional effects are investigated for the Laser Wakefield 
Accelerator (LWA) Concept’*‘s’f5 The nonlinear regime is 
emphasized7,“‘9,‘0,” A fully three-dimensional and nonlinear fluid 
equation is derived. Using computer simulations, we find the nonlinear, 
1-D theory tu be a good guide for calculating the accclerarion field even 
for narrow driving pulses. The possibility for relativistic optical guiding 
is also considered in light of the recent work by Sprangle et al” 

Introduction 

In the laser wakeiield accelerator coccept a short intense laser pulse 
of length - xc! o+ is sent through a plasma to excite a plasma wave 
wake, A trailing bunch of electrons is accelerated by “surfing” on the 
wake. This concept was first proposed by Tajima and Dawson’ and was 
subsequently studied using computer simulations by Sullivan and God- 
frey’ and Muri’. The necessary laser technology was not available at 
that time so an alternative concept called the plasma beat wave accelera- 
tor was proposed4. However, beginning with the linear analysis of 
Symglc et ui.,’ there has been a renewed intert’ht in the LWA owing tl.) 
recent advances i:] Ia\er technology’. 

Most of the recent research on the LWA has been concerned with 
1-D nonlinear cffectsi~R~g~‘D~l’. Th cre are rhree reasons for considering 
the nonlinear regime. First, nonlInear drivers lzad to an mcrease in the 
wake’s phase velocity, thereby 1ncreasinS the dephasmg lengrh for the 
accelerated particles Second, nonlinear plasma saves lead to an 
increase in the wsake’c wavelength, enabling th: use of longer laser 
pulses for a gtven pl,tsma density. or the use of higher densi,ty plasmas 
(hence highiar accelerating gradienrh) for a given pulse length TtAird, it 
is nrcesssry for the drivers to be relativistically sclf-focuted”5’“s’4 (opti- 
cally guided) FO that wakes c.m he excited over many Rayleigh lengths. 
When a light pulse self-focuses in plasma, its rarftus reduces to a vize on 
the order cf a collision!es, \kin depth c/ mp For this spot size the \nlue 

et& 
of o;cw IS greater thdn unity when the self-focuhing power lhre~hold 

(P :, 20 2 GW) i\ exccedcd. Therefore the laser amplitude is typi- 
w; 

tally nonlinear 

These nonlinear analysrs have been limited to one dimension. 
However. since the laser spot size is in general on the order of a c i (0,. , 
then transverse derivatives can no longer be neglected. A two- 
dimenstonal analysis is therefore required. In this paper we will use 
particle-in-cell computer simulations m order to examine the LWA in the 
nonlinear, two-dimensional regime. We first derive a fully nonlinear 
three-dimensional fluid equation S.l1,1S We reduce this to the one- 
dimensional limit and discuss some imponnnt cotzsequences for self- 
focusing deduced from the 1-D equattons by Sprangle et nl.” We then 
pre\ent t~~o~dlnlcnsional simulations which show qualitative agrccmcnt 
with these conclusions for spot sizes as narrow as 2 c / C+ 

Nonlinear Fluid Equations 

In this section we outline the derivation of a single equation for the 
fluid momentum @. We stari from Maxwell’s equations. the continuity 
equation and the relativistic Euler’s equations for a cold plasma. By sub- 
stituting Faraday’s law into Euler’s equation we obtain 

$3 + Vx3xij (1) 

where 3 E V x @- $ ) is defined as the vottlcity and x is the vec- 

tor potential. The tmportanu: of eq. (5) is that it implies V = 0 forever 
if it vanishes at t = 0 over all SpaCe. 

To derive the nonlinear equation for j?’ we substitute Ampere’s law 
into the curl of J: 

vxvxf3 = e 4?q++ f i!; 

[ 1 
(2) c c 

a 3 
An exyrcsaion for -2; can be obtained by dtffrrenti:iting Euler’s equa- 

tion: 

&et=-sjj+- 
cl t2 

m -6 V y 
at (3) 

Penally. rcplacingj’by --c NfQ and usjn g Gauss law in ccl I!) gi\rh 

I 

lyv -v? ,. .!. ..r!‘. t;t 
Cl j,’ 
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+ w; jf ’ 
Cl 1; 1 +. 6 Lj 3 + \‘? ^{ 
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v.bere -/ = ( 1 t- If ,” ,,,lJ ()L _ ilEe’N 
m2c2 ‘ 1’ m 

This mrnlincar equ:iti<)n fc>r only the fluid nmment~nl cl>n-ipletelj 
dcscritrec rhe evolutmn of the plasma since all the other 1ielJs c:m 1%~ 
dzt-ii cd tl-om p’ 

I-1) I.imit 

1%‘~ assume that 3 varie\ in only the j; dIrection md that it is a 
fur.ction of the single vanable < = x- ct W’e assume v0 = c which is 

2 
equivalent to assuming *T- >> 1 The x c<>mponent of cq. (4) reduces 

f-J), 
to 

7 
4, (y-1)1) = +&&l] (3 
4’ 

&; L: 
\vhcre y;’ = 1 + -_- = 1. -0 

*n%W - 2 
md p, IS i:orm:~ll~eil 13 mc. 

l:rom eq. (3) WC lint1 7 --I’, = I -t-p -z v,hcrc $ is nonrl;rli03l IO 

,112 ---- and N to the ion density b,, Eq.(S) has been solved analyttcally 

an: numerically by various authors, Berezhlani and Murusidze* have 
shown analytically that for square shaped driving pulses the maximum 
value of 1 ++ is -- -f,* and the maximum vlaue of E, is -y, For 

gausstan shaped pulses, we find E, -- 4 These results can be found 

in ref. 7. Results from I-D computer simulations also agree with these 
scaling laws. 

In the 1 -D limit the transverse component of d is due solely to the 
driving pulse and it is described by the transverse pan of eq. (4). 

__.. + r. 2’ -a2 1 3 --w2 N p = L. - L ax2 2 at2 c2 ii, Y 
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If $ + = I (linear theory) the phase velocity of light in plasma is 
n,a 2 

v. = ci (1 - o,)l’, The phase velocity is 
N 1 

02 
reduced when - - 

ii, Y 
becomes less than unity. Wavefronts self-focus in plasma because 
N 1 -- 
ii, Y 

ts typically smaller at those positions where P, is largest. 

It was thought that the entire portion of a light pulse which 
exceeded the self-focusing power threshold would be optically guided, 
since y and N individually respond on tr) -’ (laser) time scales. How- 

N 
e\‘er. Sprangle ct al. pointed out that the ratio =- responds on wF’ 

%Y 
N 1 

time scale\. ‘IX\ is aeen by noting thar r r 
I = ~ and 1 +Q is 

no 1+4 
described by eq. (5). Consequently, they concluded that it is not possible 
to optically guide (self-guide) laser pulses in the LWA because the 
pulses are onI> nciro, in length. Their analysis was essentially one- 

dimensional. For narrow laser pulses the quantity 2 will no longer 

be equal 1,~ 
1 

--. 
i-td, 

‘The importance of the difference is discussed in the 

next section. 

Computer Simulatiorts 

In thrs section we present 2-D PIC simulation results. The simula- 
tion code WAVE W.IS used. The laser pulses are injected from the left- 

hand boundary with a frequency %- 
WF 

= 10 The light is polarized in 

the z-dlrcc:iiln (nu: of the simulation plane) with a transverse field profile 
c(,(? n )I. 

2 
and ;i lor.gltudlnal pulse width XC! (I+, All lengths are in 

vc, 

unita of c/U 
mcOF 

,, .md &Ids are nc)rmalized to __ 
e 

We begin by examining 2-D effects on the plasma wake. In figs. 
la, b, and c, \ve plot the longitudinal electric field vs. position for 
y. : cm, 10 and 4 respectively. The amplitude of the driving pulse was 
“OS2 --- = 4 and its field is plotted in lig Id. The numerical results given 

c 
m ref 7 predict a maximum value of 1.8 for E,. We find reasonable 
agreement in fig la where E, IS nearly 1.6. It should be noted that 
better agreement is obtained when longer system sizes are used. In these 
simulations the sysrcm was only 15 c!o), long. As the driver’s width is 
reduced, it is seen in fig. 1 that E, is oniy slightly reduced. Therefore, 
even when the drixer’s width approaches ci w,, the 1-D predictions are 
still a good guide for determining the accelerating field strength. This is 
a significant rcs~~lt becnure rhe transverse derivatives in eq. (4) can no 
longer be neglrcted. 

We next consider the tendency of the drivmg beam to self-focus 
when ?? is polarized in the translationally invarian; direction. For this 

polarization ncnlinear term in eq. (4) 1s simply -wp g $ Sprang+ 
c2 nay _ 

N 1 
et cd argued rhat for y0 = c: a+,, - = ~ 

rbY 1+0 
and that the quantity 

N 
7 - therefore responds on 61,’ time scale. We performed I-D simula- 
“07 

tions for which the incident laser had a rise time of .S wF’ The laser 
then maintained its peak amplitude for the duration of the simulation. 

The quantity g $ was carefully monitored. The results are summar- 
“0 

ized in fig. 2. The ratio -? was 5, 10 and 20 for the simulations shown 
WP 

in figs. 2a, b and c mspectively. The x axis in fig. 2c is normalized to 
N 

c rather than c i wF The results show that, although : begins to 
2to, 

respond after a stngle laser cycle, it takes - w,,t g 
,li Iby 

- to reach its 
Y,‘- 1 

asymptotic value. We note that even when the plasma wave gets large 
N 1 

enough for a Fignificant nonlinear frequency shift, T 7 still responds 
no 
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Figure 1 

on a time scale of the linear plarma frequency. This is important because 
IL in the nonlinear LWA concept the driver pulse is ~ 

,fNL 

= $- long. 

Therefore, if yL is large a substantial fraction (1 - 7 ) of the driving 
Y 

pulse IS initially optically guided. 

In fig. 3 we plot $ from 2-D simulations for which the driver’s 
w 

pulse length was EC/ op. The simulation had yO= 10 and 4 and 
“OS 
-- .- =4. We find that initially along the axis of the laser $- 

C %Y 
behaves as it did in the I-D simulation. However, after O,,I 2 I it 
becomes considerably smaller because of the transverse blow out of the 
plasma electrons. This would seem to indicate that narrow nonlinear 
LWA pulses may be more easily guided. 

N 
Finally, we compared y to 

1 
- for the narrow beam, 

w I+@ 
N 

y0 =4, simulation. In fig. 3c and d we plot =-- and I$ vs. y at an x 
%Y 

position within the driving pulse. We find that the relative phases of 

&- and -L. are in agreement, but their amplitudes are not. This 
w I+$ 
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indicates that the 1-D arguments which equated & to 1 
__ give the 

noY 1 +Q 
correct qualitative behavior, but a more rigorous 2-D analysis is necer- 
sary for narrow (yO - 1) driving pulses. 

Summary 

In this paper me have presented preliminary results from 2-D simu- 
lations. These simulations were done to study the nonlinear, LWA con- 
cept for laser pulses with ci wp spot sizes. We found that the 1-D non- 
linear theory gives reasonably accurate estnnates of the accelerating 
field. We also found qualitative agreement between the conclusions of 
Sprangle et al.” and the 2-D :’ 5tmulation results. We have not performed 
short pulse simulations over many Rayleigh lengths for large values of 
oi op. This is an area for future work. Lastly, we note that experiments 
are being planned jointly between UCLA and LLNL in the LISA to test 
both wakefield generation and relativistic optical guiding. This laser is a 
IOTW 1 ttm in laser with a pulse width of 1 ps 

We acknowledge useful conversations wnb J.M. Dawson and P. 
Sprangle. Work supported by DOE contract DE-ASOS-83-ER40120 and 
DOE grant DE-FGO3-87-ER13572. 
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