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ON THE BEAM IMPEDANCE OF SHALLOW TAPERED CAVITIES 

Arne F. Jacob, Glen R. Lambertson, Ferd Voelker 
Lawrence Berkeley Laboratory, 1 Cyclotron Road. Berkeley, California 94720, USA 

Abstract 

A local enlargement of a beam tube may support high-Q resonances just 
below the cutoff frequency of the first TM-mode. We have investigated the 
longitudinal beam impedance of such cavities that have gradual changes in 
pipe radius. For convenience, circular cross sections and linear tapers were 
assumed in the analysis. Several methods with different approximations 
have been compared. The calculations gave values for the stored energy 
and the Q-factor which agreed well, while the numbers obtained for 2s 

exhibit some variation, but remain very small 

Introduction 

To permit elliptically polarized light to emerge from the Advanced Light 
Source (ALS) a channel with circular cross section will be machined into the 
vacuum chamber Where this channel joins tangentially the curved beam 
tube, the enlarged cross section forms a shallow cavity. Depending on its 
length, such a chamber may support one or more high-Q resonances just 
below the cutoff of the beam pipe. The question whether it would present 
enough impedance to the beam to drive coupled bunch instabilities 
prompted us to invest gate the problem in more de!ail. 

An experimental approach was not seen as being very practical and cost 
effective so that a theoretical examination was pursued Further to reduce 
the task, a simplified example cavity with rotational symmetry was chosen 
because it was thought to provide enough insight into the beam impedance 
issues. Two different procedures were considered. The first to be described 
uses a semi-numerical technique to give an approximate solution of 
Maxwell’s equations “or that problem. In the second method, simple but 
realistic field distributions were assumed, yielding quasi analytical answers 
for the transit time effect Also the result of a digital 2-D calculation will be re. 
ported 

Semi-numerical Descriotion 

The Method 

The dimensions of the cavity model tiith circular cross sections used in 
these simulations are shown in Fig I The radii have been chosen to match 
the minimum and ma’ximum TMOt cutoff frequencies of the cross section of 

the actual cavity For simplicity, the taper has been assumed to be linear, 
although In principle lhe method allows for any contour The 5% increase in 
radius reduces the TMu- cutoff frequency from 4 989 GHz to 4.761 GHz, 

leaving only a very r,arrow band for high-Q resonances. The short length 
further limits their number. 

For each cross section of an axially nonuniform structure the fields can be 
expressed in terms of the normal modes of the local aperture. Relating the 
various fields to one another, leads to the so-called generalized lransmis- 
sion line or telegraphist’s equations, which for tapered transitions have the 

form ’ 
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Fig.1 : Longitudinal cross section of the tapered cavity 
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where Zi represents the characteristic impedance of a woveg~,ride mode, 

and y, its propagation constant along the axial coordinate z The complex 

ampl’tudes. Vi and Ii, of the transverse electric and magnetic field cigrnvec 

tots, -f?tt and -kti respectively, are defined through 

-E>t _ C ‘it) .~ c -~iV,, ;;t C i;ti C -tTj Ii, (2) 
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;, :. 
whrra Et and Ht are :he to!a’ irans’i’e~se field:. a~tl r! , :II~II I‘;, ii,?? 

normalized through the surface integrals 

-li;dS - 1. 

The coupling coefficients in Eq.i are then given by -i 
cik = -gk%dS 

S 

At frequency (pi the longitudinal field components are obtnirred from 

.> :r :, 
jo:,:Ez V(nzx’6t), j:q<Hl V ( H t x II ;), (4 
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where E and 11 are the permittivity and permeability of the volume, and II z 

the unit vector in axial direction The system of coupled differential equa- 
tions (I) can now be integrated. For that purpose, however, it has to be rea- 
sonably truncated and boundary conditions have to be set. As the taper 
considered here is very flat, modes of higbcr order than the fundamental 
TMut will be excited only very weakly and have therefore been neglected 

This in turn greatly simplifies the analysis Eq.1 then reduces to 

$1 = [.,:,:, -Iyrj (5) 

For the circular cross section, the elements of the matrix can be calculated 
from 

C 
tan Q k2c 

,, = -7, YjZl = jw -+ F > -q/q = PC (6) 

where the local quantities r, tan 0, and kc are the pipe radius, the slope of 

the cavity wall, and the cutoff wave number, respectively. 
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The axial symmetry of the structure allows one readily to state the boundary 
conditions For large z the fields should decay, exponentially approaching 
zero amplitude. At z=O the resonance condition imposes either an open or 
a short circuit looking into the cavity. Thus, either the electric or the 
magnetic field have to be normal in that plane. If only the TM07 mode is 

taken into account, this condition readily determines the starting values for 
the integration iof Eq 5. From Eqs 2 and 4, they read Vi =0 and I1 = 1 for 

modes with an even axial symmetry in E,, and VI :- 1 and I, =0 in the other 

case. The value of the nonzero component enters only as a linear scaling 
constant and therefore has been chosen to be unity. The resonant 
frequency was set by using the boundary condition at large z. Of course it 
cannot be determined exactly because of the exponential z-dependence of 
the fields. Therefore a location z2 far enough away where the fields are 

sufficiently sma’l was chcsen Then the freqiiency was varied until both the 
fields and their slopes ware reasonably close to zero 

For (r = 230’ l/gm, the Q-factor is 14,718; its value is rather Insensitive IO 
variations in the numerical parameters such as the number of steps during 
the integrations, the value of ~2, or, to some extent, the resonant frequency. 

The opposite is true for the beam impedance, ZB: its value, which, from 

Eqs.7 and 10, was found to be on the order of a few 10 II, varies by as much 
as an order of magnitude depending on the settings. Integrating along the 
beam pipe radius as indicated in Eq.8 approximately doubles the voltage. 
For completeness, it should be mentioned here that a second mode of the 
odd type was found at 4 986 GHz, i.e. less than 4 MHz below the beam tube 
cutoff. Its parameters are of the same order of magnitude as for the even 
mode. However, with the approximations Involved in the calculations, its 
existence can be questioned 

1 I 

From the knowledge of the field distributions, all the cavity parameters rele- 
vant to the beam can be evaluated. Using Eqs 2 and 4, the voltage experi- 
enced by the bcam, travelling at the velocity of light, is then calculated using 

I1 jj 

0.5 
=? I \ 

1 

(7) ” -2x01 k cos koz 
= ~-.-- 

B jW~~,(~,) r2 sin kO* 
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dz , 

0 
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whore cos and sin apply to the short and open circuii cases. respectively, 0 ’ i . -+.-... 4 

kO is the wave number in free space, J,, is the Bessel function of nth order, 0 100 200 300 2 [mm] 400 

and ~0, is the first zero of Jo Ideally, the integrated voltage is invariant 

7, and should, in particular, give the same result when 
Fig 2: Plot of I,, the normalized longitudinal electric field 

across the aperture 
evaluated at the beam pipe radius r, according to in an attempt to further simplify the calculations, the coupling factor C,, in 

Eq.5 was set to zero. For the mode current I,, Eq.5 can then be rewritten as 
z1 

,tiLz;%,, 1 “““:;“’ { ;;;;;}dz vg=.- 
d*+ 
- -. (8) dz2 

= -(k; - k:) I, = -k: I,. (11) 

0 

For the even mode the integration then yields a resonant frequency which is 
The dissipated power P and the stored energy U in the cavity can be ex- about 2 MHI higher than previously, and 2% more stored energy and dissi- 
pressed il terms of the mode current as pated power. The Q-factor is identical, and the beam impedance is the 

same within the variation indicated above. Substituting Ez for II in Eq.11 

p =4Rszjkjz, 
z2 

only introduces a small change because the two quantities are very similar 

u - 2p 
r 5 

for gradual tapers. This latter approach has the advantage that no knowl- 
I I, 1 2dz (9) edge of the eigenmodes of the various cross-sections is required The only 

0 0 information needed is the z-dependence of the cutoff frequency, which 
could be obtained in more complicated cases, by purely numerical means. 

In addition the geometry was evaluated using URMEL-T 3, All results agree 
well with the previous data, except for the value of the beam impedance 
which is on the order of a few kO, and depends on the discretization. and 
thus did not appear to be very reliable. 

where 

Rs= yj 
?i 

is the wall resistance The conductivity is denoted by F Finally. using Eqs 7, 
or 8, and 9, the beam impedance at resonance and the quality factor of the 
cavity can be ccmputed from 

1 vB/ :! 
20 p-’ 

The uncertainties in all methods arise from the fact that, because of the 
slowly varying fields, the integral of the fields involves differences of large, 
but very similar quantities. Small variations in the numerical parameters then 
have effects which may be bigger than the result itself. It should be 
mentioned that the simple method outlined above should, in principle, be 
probed by adding more modes, until a stabilization of the results is 
achieved. As this, however, requires a different and more elaborate solution, 
another way, which will be presented next, was chosen. 

Analylical Models 
At first Eq.5 was numerically integrated using a Runge-Kutta algorithm. The 
first resonance was found at 4.866.. GHz. The mode has an even axial 
symmetry in E,, as illustrated in Fig.2 for one half of the cavity The fre- 

quency setting is critical for the far.end boundary condition to be fulfilled be- 

cause of the exponential nature of the field’s r-depender:ce below cutoff 

Taking the inverse approach, assumptions for the zdependence of the 
longitudinal electric field were made This actually corresponds to a different 
taper profile than in the previous case If Ihe shape of the fields is very 
similar however, the order of magnitude of the effect is expected to be cor- 
rect. 



At first the voltage experienced by the beam was evaluated with the as- 
sumed axial field 

Ez = Ea sech(az) 

where EO and a are scaling constants. Then the voltage becomes 

kOT 
; VS 1 = 2 E. 

i 
sech;az) cos(k@) dz = EO z sech z 

0 

The constant a was set so that the axial position where the field has zero 
curvature is approximately the same as in the previous case (az-0.68 @ 
z-0.045 m). Assuming the same resonant frequency, the resulting voltage 

is about 9.10-5rn Eo, 8fhich is in close agreement with the former result. If 

the dissipated power is of comparable magnitude, the beam impedance is 
about 20 fl, thus con’irming the previous calculations. However, the result 
exhibits some variation as a function of the uncertainty AZ in determining 
the point of zero Cun’at!tre. For large enough V&J% of kg/a, i e for long 

tapers, the impedance varies by a factor 

z 
-e 

kg”&/‘1 76 

z+Az 

which, for AZ ;i iO.lz is about 5 in our case. 

Yet another calculation was carried out with the field distribution being ap- 
proximated by 

k: 1 tCcosbz 
E, = Eo, 

1 +C 
for / z 1 S z1 , 

km 

and 
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k2 
Ez = EOZ 

1 + Ccosbzl -(k2 -k;)t&z-zl) 

k2 
-i-T-Fe m 

for IzI B 21, (12b) 

where kc is the transverse cutoff wave number. a function of z which varies 

from km at the cavity center to k, in the tube. The constants C and b, and 

the wave number at resonance kg are yet to be determined Approximating 

the Hertz vector by its z-component ff for TM waves in cylindrical pipes, the 
following relations can be written: 

TI = EZ,lkE, (134 

(1W 

(13d 

where the index t refers to transverse quantities. With the matching condi- 
tions at z=z, one obtains from Eqs.13 for the fields of Eq.12 

bcotbzl = - 

and 

C = -cos bzl. 

Evaluating Eq.lSb at z-0 finally yields 

(14) 

k2.k2 =ia”n 
0 m Il,2 

C b2 

z=o = - 1+c 

With 

VB = Ezejk@dz = 2 
7 

EzcoskOzdz 

325 

(16) 

the voltage experienced by the beam can now be evaluated from the longi- 
tudinal field in Eq.12. Using Eqs.14, 15, 16, and, from Eq 13b, the formula 

k; t C (k; - b2) cos bz 
n 

k: = ..-.- 
1 + C cos bz 

the integration yields the surprising result VB - 0. This special field shape 

confirms that the beam impedance may be very small The calculation 
yielded a shallow cavity of the shape depicted with suppressed zero in 
Fig 3. The parameters z.1, km. and k, were the same as in the previous 

cases. 
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Fig.3, Ratio oi cavity radius to beam pipe radius 

The beam impedance of very shallow tapered cavities has been studied, 
using several different approaches. Both semi-numerical methods and ana- 
lytical models indicate that, because of the transit time effect, the beam is 
weakly coupled to such cavities. Although some approximations are ill- 
volved in the model and in the calculations, we conclude that this feature in 
the ALS will be harmless 
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