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DIAGNOSTICS AND INSTABILITY STUDIES OF COOLED ION BEAMS
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Electron cooling in storage rings leads to phase space densities, at
which beam transfer function and Schottky noise signals can have
unexpected features. They come mainly from the fact that for
nonrelativistic energies the impedance is dominated by the imag-
inary space charge impedance and that the threshold of instabili-
ties 1s approached during cooling. Theoretical results for Schotiky
spectra and BTF measurements are used to discuss the interpre-
tation of presently available experimental data for beams cooled
by electrons. These data indicate that the conventional Keil-
Schnell-threshold has already been exceeded by a factor larger
than five. The relevance of these methods to the diagnosis of ultra-
cold beams, where the friction force plays a role, is discussed.

Introductio

The analysis of the noise from the random distribution of par-
ticles in circular accelerators has become a standard diagnostics
technique since the first observations at the CERN ISR [?]. In
low-intensity (more precisely, low phase space density) beams the
phases of particles in a coasting beam are uncorrelated. Since
each particle excites an electromagnetic signal at the harmonics
of its revolution frequency, the lr)ngitudinagl noise spectrum of a
beam at low phase space densily directly yields the distribution
of momenta. This was the case in the early ISR measurements,
where the microwave instability of the injected beam was belicved
to lead to phase space dilution and thus to an uncorrelated noise
spectrum. The thus obtained momentum distribution was used to
determine the transverse coupling impedance from the measure-
ment of the transverse beam transfer function (BTF). Due to 1f
stacking the transverse phase space density was high enough and
lead to a considerable "collective” shift of the stability diagram
proportional to the coupling impedance and the current. For some
assumed value of the impcaanre a momentum distribution could
be calculated. If it agreed with the Schotiky measunrement, the
correct impedance was found.

The development of electron cooling and, most recently, of
laser cooling has lead to high phase space densities in the longi-
tudinal as well as the transverse direction. The Schottky spectra
are considerably distorted by collective effects (double peaks or
Pears”), as has heen shown by measurements of several groups
[1,2,3]. Effective cooling leads to the boundaries of longitudinal
and transverse stability, in which case the consistent interpreta-
tion of the data of Schottky noise and beam transfer funciion
measurements is not straightforward, and a comparative support
from thecretical calculations becomes necessary.

It is interesting to note here that much earlier a behaviour analo-
gous to the double peaks has been observed in scattering of elec-
fromagnetic waves from plasmas. Calculations pertaining to the
backscattering of radar from the ionosphere have shown that the
scattered spectrum for a “hot” electron plasma is Gaussian (”in-
coherent scattering”), whereas for "low” temperalure there is a
shifted peak at positive, and another one at negative frequencies
P] This peak has been related to "coherent scattering” at the
requency of plasma oscillations. The oscillations cause spatial
correlations over distances of the wavelength of the oscillation,
which then lead to enhanced scattering at these particular fre-
quencies.

Analytical Treatment

In the following we present some basic relationships for Schot-
tky noise spectra and BTF of cooled beams (see also Ref.[5,8,7])
as well as numerical evaluations. The model used here is that of a
beam described as a collisionless ensemble of particles, with cor-
relations among particles only due to the (macmscopxc? electric
field of coherent oscillations. We deviate from this "collisionfree
plasma” approach only in the last section, where the stroug fric-
tion force from the cooling electron beam is discussed.

Longitudinal Schottky Spectrum

The otigin of the electromagnelic fluctuations in a circulating
beam is the statistical noise with no correlations in the case of
low phase space density. On a longitudinal pick-up one observes
at each harmonic p of the revolution frequency a power spectrum,
which is given by the familiar expression (8]
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with € the observed frequency, q the ('hardgn state, N the tofal
number of ions and ‘I’O(ws the equilibrium distribution of revolu-
tion {requencies.
For a cooled beam this expression has to be medified in the fol-
lowing sense: the electromagnetic fluctuations due to the random
noise act as a source term to which we must add the collective
response of the beam.
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As usualin electromagnetic theory this can be done by intreducing
a dielectric function connecting the total eleciric field with the
source term according to
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The dielectric fanction is calculated from the collisionless Viasov
equation by first order perturbation theory. For longitudinal per-
turbations one obtains the familiar expression for the one- dimen
sional plasma dieleciric function
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where D is the dispersion integral given by
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and Z is related to the coupling impedance and the (electrical)
current [ according 1o
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with A the ion mass, and 7 introduced as dw/w = yép/p. It is
important to note here that for nonrelativistic energies the space
charge impedance
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is in general much larger than the pure machine impedance, in
particular the resistive (real) part of the impedance.

With the dielectric function and using Eq.3 we thus obtain the
general expression for the Schattky power spectrum
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It is noted that for small impedance or current we have ¢ =~ 1, and
thus Eq.1. On the other hand, if we decrease the momenium width
of a beam with given current, € can become very different from
unity indicating a large collective response as will be calculated
in the next section. Here we only note that for small mementum
spread the spectrum develops two sharp peaks. They become
({lormally) infinite, if for some real
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which is the condiiion for the existence of real eigenfrequencies
(i.e. the dispersion relation). Eq.9 is at the same time the bonnd-
ary to instability to be discussed next.

The beam transfer function 7 is defined as ratio of beamn re-
sponse to the excitation voltage on a kicker, where we have to
add the additional collective response as above. It is usual to
compare the collective response with a feedback loop given by an
impedance. The relatiousLip can be written in the same fashion
as Bq.8, where the source term is the response in the absence of
the impedance, rsp. intensity. Hence we have
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The inverse response is the stability diagram, which is written as

(12)
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hence the shift of the stability dia%‘ram gives directly the impedance
The boundary of stability is reached, 1f the inverse response van-
ishes, in accordance with Eq.9. In Fig.] we plot in the complex Z;
plane the curve 1/7) 4 for three distinct momentum distributions,
but normalized to the same (Ap/p)supm: a quadratic (1~ 2%)%; a
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; and a bi-Gaussian e™™ + %e (=/2P " where a frac-

tion o (here a == 0.4) of the main distribuntion is contained in the
broader Gaussian. For stability the point —Z; must be iunside the
respective curve. Due to its sharp edge the quadratic distribution
has the smallest stability region, wﬁereas the extended fails of
the b1-Gaussian lead to an enlarged stable area near the positive
imaginary axis [9]. This is the direction, which is relevant for the
space charge impedance below transition energy, whereas above
transition the stability margin extends only to the lower bound-
ary.
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Fig.1 Stability Curves and Keil-Schnell- Circle

It is noted that the distance to the lower boundary is prac-
tically the same for all three distributions, hence it 1s a measure
for (Ap/p)swam. In order to relate this to real numbers it is con-
venient to define a circle in the complex Z| plane with a radius
extending to the lower boundary as indicated in Fig.1, which is
usunally understood as ”Keil-Schnell-threshold”. This we can read-
ily calculate by inserting into Eq.11 the frequency at the center

of the distribution, § = pwy, and using the Gaussian. Hence we
find:
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where the momentum spread is the half fwhm value.

How to Interpret Measured Schottky Spectra?

Longitudinal Schottky spectra reflecting the characteristic dou-
ble peaked features have been obtained by all groups working with
electron cooling after successful control of electron and ion beam
parameters. Fig.2 shows the measured current (i.e. the square
root of the power) for a 2.5 emA beam of 2C®* at 11.7 MeV/u in
the Heidelberg TSR before and after cooling [10]
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Fig.2 Measured Schoitky cyrrent (TSR Heidelberg)

It is noted that the cold heam spectrum has developed two
peaks, which are related to the slow and fast coheren! waves.
A straightforward evaluation would be to calculate specira for
different momentum spreads and an assumed distribution function
and compare them with the measured spectra. The almost equal
heighth of the slow and fast wave peaEs of Fig.2 indicate that
the resistive impedance is guite small. We have thus arbitrarily
assumed a small resistive impedance of 1 % of the space charge
impedance, the precise value of which is of no importance for
the rest of the discussion. The space charge impedance we have
taken according to Eq.7 approximating the logarithmic term by 2
({for a more consistent determination see the later section on peak
separation). For a Gaussian momentum distribution the Schottky
current (i.e. the square root of the expression of Eq.8) is shown in
Fig.3 for the beam of Fig.2 and using different momentum spreads

(half fwhm).

A comparison between the measured and calculated spectra
suggests that the case with Ap/p = +0.00015 agrees best with
the measured spectrum of the cold beam.

"Figure of Merit” of Longitudinal Cooling

In the stability diagram of Fig.1 the shift corresponding to this
cold beam result is represented by a cross. Hence this case is well
within the stability boundary of the Gaussian, but a factor of 5.7
above the Keil-Schnell-threshold. This is an important result with
respect to the design of heavy ion fusion storage rings }9,11]. Tt
is interesting to notle that the excess factor over the Keil-Schnell-
threshold is also related to the suppression of the Schottky current
at the band center (where 0 = pwy), which is given by the dielec-
tric function €. This suggests to use this factor as the figure of
merit” of longitudinal cooling, by using Eqs.10,12, with all func-
tions evaluated at the band center:
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Fig.3 Caleulated longitudinal Schottky current with decreasing
momentum spread for Gaussian momentum distribution and beam
of Fig.2

) imZz
= l‘f I (14)
I /TH.OIb.rv

Hence the Keil-Schnell-threshold corresponds to "FM”=1 and a
Schottky current suppression at the ban({ center by 2. This is also
in agreement with Fig.3, where the different curves corresponds
to "FM”=0.09, 0.8, 5.7 and 12.8.
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For completeness we note that above transition energy the r.hs.

of Eq.14 acquires a negative sign. Approaching the threshold of
the "negalive mass instability” (ep.. = 0) thus leads to an in-

finitely high Schotiky power at the band center.

Infor—iation on the Distribution Function

In the preceding section we have shown that within sufficient
accuracy tﬁe suppression of Schottky current at the band center
of the cooled beam is a reliable measure for (Ap/p)unn. Using
Fqs.13,14 and comparing the central suppression in the spectra
of the uncooled andj cooled beam one can thus directly determine

(Ap/P)suobim-

In Fig.4 we compare calculated power spectra (ie. squared
Schottky currents) for the three momentum distributions intro-
duced in the preceding section, again normalized to the same
(BpP/P)jubm, and all other parameters as in Fig.3.

It will be noted that the double-peaked feature is practically
absent for the quadratic distribution, which has a sharp edge.
Although this distribution is not a very realistic one it may %m
of interest to observe the following: approaching the siability
boundary is equivalent to moving ﬁiuring cm»lingi the coherent
frequency to the edge of the distribution function, where its deriva-
tive is large. This means large Landau damping, which suppresses
the amplitude of the coherent oscillation. Due to the absence of
tails, on the other hand, the stability region is much smaller than
for the Gaussian distribution. Landau damping is abruptly lost if
during cooling the edge of the distribution function moves across
the coherent %requ ency.

Reducing the momentum spread further down to ::0.0001 illus-
trates the importance of the tails: the Gaussian (same as coldest
case in Fig.3) is almost at the stability boundary and therefore
has higher, but narrower Schottky peaks (note that the quadratic
is unstable at this momentum spread). We thus conclude that
the heighth of the Schottky peaks is a quite sensitive function of
the population of the tails of the distribution function, and of the
vicinity to the stability boundary.

Fig.j Schottky power for different forms of distribufions and
Ap/p = 40,0003
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Fig.5 Same as Fig.4 but &p/p -
of vertical scale by 2)
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Figs.4,5 comfirm that all three distributions have in common
an equally large suppressed Schottky power al the band center
as described by Eq.14. The suppression of the integrated Schot-
tky power (over one band) is also an indication of decreasing
(Ap/P)rwhm, yet this depends quantitatively more on the tail pop
ulation as follows from inspecting the areas in Figs.4,n.

Peak Separation and Impedance

The Gaussian, and even more the bi-Gaussian, show the typ
ical double peaks at practically the same separation. For suffi.
ciently cold beams (”lg‘M” comparable with or larger than unity)
this separation can be thus used to measure the coherent fre-
quency shift. The left peak is related to the "slow wave” and the
right peak to the "fast wave”. By inserting into Eq.4 a §-function,
Vo = wi/(27)6(w - wy), one obtains readily
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232

The peak separation can be used to determine the total intensity, if
the impedance is known. Eq.15 can be used also to determine the
impedance via the slope of the frequency separation vs. intensity.
Measurements performed at the TSR have indicated with increas-
ing intensities a decrease of the slope [10]. This is consistent with
the asumption that the space charge impedance decreases, since
with increasing intensity there is an’increase of the emittance and

thus of R,.

BTF Measurements

If the impedance were known one could directly determine 7,
the imaginary part of which gives the derivative of the distribu-
tion function. For unknown impedance one has {o search for both,
impedance and distribution function. We discuss lwe procedures
depending on whether the Schottky spectrum is known or not.

Comparison with Schottky Spectrum

With an assumed value for the impedance one can determine a
function ry0, and from Eq.5 a corresponding distribution function
Wy With this impedance and the dispersion integral and by us-
ing Bqs.4,8 we obtain annther distribution fanction ¥, pouny. The
true solution is found il both functions agree, i.e. il the functional

(16)

vanishes or adopls a minimuni near zera. This procedure has been
implemented in the diagnostics concept of the BSR [12,13]. An
appropriate computer program has been written herefore. With

I = /lan)muky - ‘l’h,bfizdw

an analytical input for the BTF and Schottky power we have
calculated in Fig.6 the variation of | by varying the real part, re-
spectively the imaginary part of the impedance. We also show the
modification assuming a 5% statistical error on the input Schot-
tky signal, which indicates that the minimum search is still well-
defined.
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Fig.6 Variational functional {0 delermine impedance

BTF evaluation alone

Due to signal suppression for cooled beams it may not always
be possible to obtain sufficient resolution for the Schottky spec-
tra. The longitudinal BTF measurement alone can be used to de-
termine approximately impedance and distribution function, pro-
vided that the shift of the origin is large enough, A sufficiently
large ReZ) can be determined by checking the shift of the asymp-
totes of the stability diagram. This requires sufficient resolution
for the frequencies outside of the beam distribution. The shift in
direction I'mZ) can be approximated by noting from Fig.1 that
the unshifted origin is approximately at the center of a circle fitted
to the bottom of the staﬁllity curve 8,i,e. the "Keil-Schnell-circle”).

Transverse BTF

_Incooling experiments with O%* the shift of the transverse sta-
bility diagram has been recently determined by the LEAR group

[14] as the vector of displacement from the point of symmetry

(Fig.7).
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Fig.7 Transverse stability diagram of cooled O*F (Ref.[1/])

Having determined the impedance they have subtiracted it
from 1/, and plotted the thus obtained function 1/7 o, which
is the zero impedance response. As expected one finds that the
curves corresponding to the slow and fast waves overlap (with
zero chromaticity). This confirms that the correct impedance has
been subtracted. Obviously this overlap method can be used di-
rectly for searching the impedance. Due to the separation of fast
and slow wave stability curves in the transverse case this fitting
method is more straightforward than the analogous procedure for
the longitudinal case. The distribution function of momenta fol-
lows directly from the imaginary part of 1/r;,. Here it must
be assumed that there is no overlap with the {ransverse ampli-
tude distribution, in which case the sitnation becomes consider-
ably more complicated.

Feedback Stabilization

At sufliciently high intensities several groups have reported un-

stable transverse oscillations of the beam [14,10]. This confirms
theoretical estimates that transverse Landau damping is lost in
the process of cooling [15].
Al LEAR a transverse damper has been used successfully to sta-
bilize the oscillations observed for the lowest harmonics [14]. The
transverse position signal on an electrostatic pick-up is amplified
and a{:propnately delayed, before it is aPplietfon a kicker to cor-
recl the transverse displacement. The mnstability is usually ob-
served for proton intensities exceeding 10°. It manifests itsell by
rapidly growing coherent Schottky signals, which develop in the
process of cooling and disappear with the damper turned on. Thus
it has been possible to raise the intensity above 10°. The equiv-
alence of the feedback damper with an impedance is seen {rom
the stability diagram ({Fig.8). The damper nearly compensates
the large shift from the impedance, which would Kave otherwise
brought the origin into the unstable region.
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Fig.8 Compensalion of impedance by a stabilizing feedback

Schottky Spectra for Very Cold Beams

The development of electron cooling and - for appropriate ions
- of laser cooling towards achieving very low beam temperatures
introduces some further complications for interpreting Schottky
spectra. In the following we summarize several features that go
beyond the model of collisionless particles with only collective re-
sponse used so far:

1) The electron cooling acts as a friction force on coherent os-
cillations. This friction force can be included in the dynamical
description of the response and widens the stability diagram, if
the cooling rate is comparable or larger than the growth rate. In
Ref.ﬁ?} it was found sufficient for stabilization to have a factor of
two larger ccoling rate than the growth rate. These calculations
have shown that the Schottky double-peaks become lower due to
this "collisional” damping of the coherent oscillations.

2) For very low intensities it is possible that the cooling rate
becomes comparable with the frequency of coherent t:zsciﬁation
given by Eq.15 (the "beam plasma frequency” o v/N) in which
case the coherenl response is entirely damped by friction. Calcu-
lations have shown that under such extreme conditions the Schot-
tky power spectrum looses the double peaks and adopts again a
single-peak shape [5,7] We note, however, that this requires cool-
ing times, which are considerahiy below a millisecond. depending
on the number of particles.

3) An entirely new phenomenon would arise, if the positions
of the ions along the equilibrium orbit were ordered. The require-
ments on Ap/p have been discussed first by the Novosibirsk group
[1]. For intensities between 10° and 107 particles one would ex-
pect a "linear chain” ordering, which can probably be achieved
more easily than three-dimensional "crystalline” ordering requir-
ing much higher intensities {16]. A direct evidence of such a linear
chain ordering could be given by exciting transverse or longitudi-
nal oscillations and picking up the response signal. The cn%mrent
frequency shift would reflect whether the Coulomb force is due
to ordered positions [17]. Obviously this requires frequencies far
beyond standard techniques, i.e. as high as 100...1000 GHz.
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