EPAC'08, Genoa, Italy

RF Reference Signal Distribution System for FAIR

M. Bousonville, GSI, Darmstadt, Germany P. Meissner, Technical University Darmstadt, Germany

> Dipl.-Ing. Michael Bousonville

Overview

- Introduction
 - Goal
 - Phase synchronisation
 - Reference Signal
- System
 - Basic Principle
 - Optical Network
 - Delay Measurement
 - Reference Generation
- Performance
- Summary

Goal

• Cavity synchronisation

 \Rightarrow signal generator (DDS) synchronisation

- Therefore necessary:
 - Distribution of phase synchronous reference signals
- Problems:
 - Different distances
 - \Rightarrow different time delays
 - Time delays not constant

 $\tau = f(L, T, \ldots) = f(t)$

EPAC'08, 25 June 2008, Michael Bousonville

Reference Signal

Basic Principle

Assembly of one system branch

Any delay variation can be compensated

 \Rightarrow absolute delay drift irrelevant

$$\varphi_{Ref} = f(\varphi_{Clock}) \neq f(\tau)$$

Basic Principle

Star-shaped distribution

One instead of N transmission units One instead of N measurement units \Rightarrow no different time drifts

 \Rightarrow systematic error irrelevant

 \Rightarrow much less effort

Optical Network

Optical Network

Star-shaped distribution

Optical Network - Prototype

Optical Network - Performance

1. Transmission Channels

- bandwidth = 1.2 GHz
- more channels possible
- $0 dBm_{opt}$ receiver input
- 2. Measurement Channel
 - bandwidth = 10 GHz
 - $0 dBm_{opt}$ receiver input
- 3. Low Costs
 - only standard components
 - only one transmission unit
 - only one measurement unit

$$\left.\begin{array}{l} noise < -143 \frac{dBc_{ele}}{Hz} \\ crosstalk < -70 dB_{ele} \end{array}\right\} \quad \Rightarrow \quad \sigma_{j,trans} < 305 \, fs$$

$crosstalk < -130 dB_{ele}$	\Rightarrow	total decoupling
-----------------------------	---------------	------------------

FBG

Rx

Delay Measurement ADD/ λ₁, λ₂, λ_M λ_1, λ_2 DROP Delay determination via phase measurement ADD $\mathbf{F}_{\mathbf{M}} = \{f_{M1}, f_{M2}, ..., f_{MN}\}$ circulator $\Phi_{\mathbf{M}} = \{\varphi_{M1}, \varphi_{M2}, \dots, \varphi_{MN}\} \implies \tau = f(\Phi_{\mathbf{M}})$ λ_{M} boundary condition: $\frac{1}{f_{M,\min}} > 2\tau$ Тх phase $\tau_{accuracy} = \frac{1}{f_{M,\max}} \cdot \frac{\varphi_{accuracy}}{2 \cdot 360^{\circ}}$ measurement f_M $\varphi_{accuracy} < 0.4^\circ$ $\Rightarrow \mathbf{F}_{\mathbf{M}} = \{50kHz, 500kHz, 50MHz, 6GHz\} \Rightarrow \tau_{accuracy} < \frac{1}{6GHz} \cdot \frac{0.4^{\circ}}{2 \cdot 360^{\circ}} = \frac{92.6 fs}{2 \cdot 360^{\circ}}$

Reference Generation

Reference Generation

Reference Signal Generation via DDS

- 1. No phase adjustment limit
- 2. Resolution of phase adjustment 1.22 ps (Reference Signal 1)
- 3. Jitter \leq 7.6 *ps*_{*RMS*} (Reference Signal 1)
- 4. Standard components

Performance

- Two reference points
- Distance from center clock
 ≥ 1 km each
- Average interval 1 s

Summary

1. Transmission of two clocks with DWDM

 $noise < -143 \frac{dBc_{ele}}{Hz} \implies \sigma_{j,trans} < 305 \, fs$ $crosstalk < -70 \, dB$

more transmission channels possible

2. Separate measurement channel

 $crosstalk < -130 dB_{ele} \implies total decoupling$

measurement accuracy better than 100 fs

3. Reference generation via DDS

 $\sigma_j \leq 7.6 ps$

- 4. Phase deviation between two reference points $< 0.03^{\circ}$ of cavity frequency
- 5. Only standard components are used

M.Bousonville@gsi.de

Additional Slides

Interfaces

System Design

- 1. WDM (Wavelength Division Multiplex)
- 2. Optimal input power at the optical receiver (0 dBm)

This is possible for two reasons

- a) Low insertion loss of the passive WDM-components
- b) High transmitter power
- 3. Crosstalk attenuation >> SNR
 - a) No effect on jitter
 - b) Measurement do not influence the reference signals

 \Rightarrow maximum SNR

jitter ∝

 \Rightarrow minimum jitter

System Design

- 1. One instead of N transmission units
 - \Rightarrow No different time dirfts in different branches
- 2. One instead of N measurement units
 - \Rightarrow Systematic error irrelevant
 - \Rightarrow Much less effort

Realisation

WDM-Laser

- 13 dBm output power
- RIN < -145 dB/Hz

	channel (ITU-norm)	opt. frequency v [THz]	opt. wavelength λ [nm]
λ_1	32	193,2	1551,72
λ ₂	34	193,4	1550,12
$\lambda_{\mathbf{M}}$	36	193,6	1548,51

Realisation

External Modulator

Realisation

External Modulator

• 10 GHz bandwidth – under proper conditions no jitter will be added

Realisation

Passive optical components

Realisation

Passive optical components

Realisation – fibre optic cable

Low drift velocity

(calculation: analytical and finite element method)

Virtually strain proof

 $\frac{d\tau}{L \cdot dF_G} = 0 \frac{ps}{km \cdot N}$
for $F_G < 4500N$

Realisation

Optical receiver

• The biggest noise source other than RIN (Relative Intensive Noise)

Realisation

Results Reference Signal Transmission

Bandwidth transmitter: 10 GHz
 Bandwidth receiver: 1.2 GHz
 System bandwidth: 1.2 GHz

3. Noise

$$\rho_{N} < -143.2 \frac{dBc}{Hz} \implies SNR > 52.4 dB$$

$$\sigma_{j,trans} \left(s_{N} = 5.56 \cdot 10^{9} \frac{1}{s} \right) \approx \frac{10^{-\frac{SNR_{dB}}{20}}}{s_{N} \cdot \sqrt{2}} < 305 fs$$
4. Crosstalk < -70 dB <<< Noise

Optimisation Parameter Jitter:
$$\sigma_j = f(\sigma_{j,trans}) \implies ok$$
 * Sine wave
Standard deviation

Delay Measurement

General

- 1. One separate measurement channel
- 2. Bandwidth = 10 GHz
- 3. Measurement channel totally decoupled form the reference channels
- 4. Nearly all measurement methods are applicable

Delay Measurement

Noise of the measurement channel

- Amorphous structure of glass ⇒ Rayleigh Scattering

- Noise due Rayleigh Scattering dominates
- Spectrum (calculated analytical/numerical)

$$S_{Norm}(f \ge 0) = \delta(f) + \frac{m^2}{2} \delta(f - f_M) + 1, 2 \cdot 10^{-4} \left[\frac{2a^2}{\pi} \frac{\Delta f}{\Delta f^2 + f^2} + \frac{2b}{\pi} \frac{\Delta f}{\Delta f^2 + (f - f_M)^2} \right]$$

$$SNR(B = 10Hz) \ge 95dB \implies \varphi_{accuracy} < 1^\circ \implies \tau_{accuracy} < 1ps$$

Optimisation Parameter Mean:
$$\Delta \mu = f(\tau_{accuracy}) \implies ok$$

Verification Delay Measurement

Verification of Delay Measurement

Test under extreme conditions

Fiber length > 1 km; temperature change: $-26,5^{\circ}C \rightarrow 24,5^{\circ}C$

