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 PEP-II LLRF and Broadband Feedba
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ommissioning Experience

ajor Upgrades
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FB - Impact of Noise in processing channel

LRF - Impact of Nonlinear Signal Processing
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PEP-II

rings of 2.2 km
mference. CDR 1991,

ated 1993

oal of factory e+e- collider
achine L 3E33

- HER 1.5A (0.75/1A 1991)

+ LER 2.14 A (2.14 A 1991)

concerns

igh Beam Loading

pedance of cavity
ndamental, detuning - low-
ode coupled bunch
stabilities

eliability -extensive R&D effort in Vacuum, Feedback and RF syste

ability Concerns - operation well beyond stability thresholds in three

OM Impedances of cavities - HOM driven coupled-bunch instabilit

OM Dampers - Still the need for coupled-bunch fast feedback (238
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199 A   1.0A     1.2E33
Run         3.0E33
Run      1.7        4.4E33
Run      1.9        6.3E33
Run      2.5        9.0E33
Run      3.0        1.0E34
Run      2.9        1.2E34
Run      3.0    1.2E34
Run      1.2E34

HER tions
The 

HER

LOM  damped!)

HOM sign)

The  (3.213 A at 3 GeV).

Wer s easy and we overdesigned/
ove
WEOB

Where we started, Where we finishe

r/run  LER stations   LER cavities HER stations HER cavities    I H
8                2                   4         4(+1 parked)   16(+4 parked)    0.6
 1              2                   4              5                20 0.9      1.5
 2              3                   6              5                20                      1.0 
 3              3                   6              6                22                      1.1 
 4              3                   6              8                26                      1.5 
 5a            4                   8              9                26                      1.7 
 5b            4                   8              9                26                      1.9 
 6              4                   8            11                28                      1.9 
 7              4                   8            11                28 2.1A   3.2A

 reconfigured 4 cavity -> two cavity station in Run 3, subsequently added 2 cavity sta
operating configuration, gap voltages, tunes, etc. were constantly changing

 current -2x design LER Current -1.8x design Luminosity4X design

 Growth rates   HER 1.2 ms-1 LER 3.0 ms-1 (design - simulation was

 growth rates    HER3x design LER growth rates   0.45 ms-1 (5.6x de

 PEP-II collider holds the record for stored charge in a storage ring

e we successful in the feedback and LLRF areas because it wa
restimated things?



M02 EPAC  June  2008

pology

Tun

Klys

• R
g

• K

Dire

• C
th

• E

• L

Com

• A  the residual impedance

Gap

• R oid saturating the klystron on
g

Lon des +/- 10

klystron

direct RF loop

comb filters
beam

RF

BPM
longitudinal multi-bunch

Σ

feedback system

_

ripple loop

mod.

tuner
loop

cavities

HVPSklys sat. loop

or

Loop technology

 Klys sat -EPICS
Gap, (ripple) - digital
,(Ripple) -analog
WEOB

PEP-II low-level RF feedback loops: To

er loops - standard tuning for minimum reflected power

tron operating point support

ipple loop adjusts a complex modulator to maintain constant
ain and phase shift through the klystron/modulator system.

lystron saturation loops maintain constant saturation headroom

ct feedback loop (analog)

auses the station to follow the RF reference adding regulation of
e cavity voltage

xtends the beam-loading Robinson stability limit

owers the effective fundamental impedance seen by the beam

b filter (digital)

dds narrow gain peaks at synchrotron sidebands to further reduce

 feedback loop (digital)

emoves revolution harmonics from the feedback error signal to av
ap synchronous phase transients
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RF
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How was required LLRF performance estim

F -Origin and design/modelling F. Pedersen, Stuart Craig (Chalk R

inear frequency domain models
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F station model, beam model -nonlinear time domain simulations (Tig

acro-bunch structure, low-mode dynamics with Non-Linear Klystro

994 model - Nocriteria for stability, robustness beyond trajectories in m
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PEP-II RF Station, LLRF

h Station

.2 MW 476 MHz Klystron

XI-based LLRF electronics

 or 4 RF cavities, with HOM loads

V power supply, Interlocks, etc.
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LFB Systems Design

SP based flexible, programmable system (can run arbitrary FIR or
eloped for PEP-II, ALS, DAΦNE (later BESSY-II, PLS and SPEAR)

ection at , correction at 9/4 RF (options 11/4, 13/4)

lable VME processing array, up to MAC/sec.

pling, A/D and D/A at 500 MHz (238 MHz PEP-II)

nsampling to reduce computational load (match processing ra
uency). Original “woofer” taken at DSP farm D/A wideband output
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w was required LFB performance estimated?

ar Growth Rates, GainandTime-domain Simulation(tracking, cavity HOM es
filter)

sholds, Growth Rates - from cavity HOM measurements/estimates

m tests - 1 bunch (SPEAR), ALS 4 processor “Quick Prototype”

olution offront end modelled and lab-tested(noise kept small for high DSP gai

uiredkicker power - estimated from injection error (amp expense,minimize insta

amics estimates from simulation. Filter completely programmable

m-LLRF Simulations predict stable Low-mode behavior - LER issue at ultim

rance policy - design in a low-mode “Woofer” channel
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Features Anticipated and Implemente

rammable80 processor DSP reconfigurable array

 MS/sec. A/D, D/A, Downsampler - table driven2 ns bucket spacing

w-dampdynamics measurements (via dual-port memory, codes)

itoring functions (Signal MUX, RMS detectors front and back-end)

fer output

F

ware controlled broadband (direct - analog) andcomb (IIR digital) loops

ware based low frequencydigital regulators via EPICS

t-in network analyzer (via time domain excitation, response function

lt files

ferinput

days of NIM Modules with Pots - are over.Software intensivesystems,
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Commissioning Experience LFB

- extensive experience with the “quick
otype” made commissioning fast

eloped control filters, timing/synchronization
hods

 system commissioned at ALS 1994

-II (1998)

Thresholds -consistent with cavity HOM
surements - damping rates per simulation

sholds -cavity fundamental driven low modes
 mA (Simulation had them damped!)

m hasRF power supply noise(very different
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rational issues -

fer required for low mode control

rdination with operations on synchronous
se, timing LFB
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Unexpected Impact of “noise” in Recei

nticipated- amount of “noise” on beam from
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w-Frequency Noise leads to saturation and runaw

900 mA - 2100 mA in HER, unexpected
sient saturation effects, loss of control

hard to diagnose, not a steady state situation,
quent transient effects

nitude of 720 Hz constantly changing with RF
em configurations, operating points, active
ions, maintenance etc.

tions via better 720 Hz control in LLRF and
fer ( more kicker amp power would help,too)
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Major Developments/upgrades - LLR

el based configuration - reconfigure loops at current. (Dynamics cha

lt file methodology, weekly reports and analysis- understand origins

 Group delay Woofer - necessary above 1500 mA (HER), 2A (LER)

tron linearizer - effort to address fast low-mode growth rates - but n
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derstanding the impact of non-
linear processing

F Signals - Dynamic range 90 dB!

-linear behavior in loop -imperfections
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Final PEP-II Run April 2008

 LLRF and LOM control limit at 3100 mA without comb rotation, n
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edance control
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F config
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Lessons Learned

F Modelling - key to understanding non-linear effects

on-linear klystron was less significant than drive amplifier

out models - impossible to sort out effects, see if things were worse t

els - prediction of limits, identification of nonlinear amp, new contro

 tookyears, but was invaluable

lt Files- so much information

-II Experience - needed a full-time RF expert
 to understand complexities of faults

 is the customer for this information?

- transient domain measurements keyto
erstanding dynamics

nticipated - saturation limit from RF system

ibility of DSP architecture key to unexpected
lications

 Accelerator Diagnostics developed
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What wasn’t foreseen -more lesson

- thermal problems with beam induced power in
ers

W power levels -SC/DIN/EIA connectors?

able fires (several systems)

rational task - management of so many stations

dividual station dynamics- unique station to
ation

dividually configured stations

act ofnon-linear Klystron/Preamp

plexity of fault file analysis

project - continual changes and performance
h in the machine

 is this consistent with the operating machine?
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Wer s easy and we overdesigned/
ove

LLR
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• U dingnonlinear amp
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Summary - Lessons learned

e we successful in the feedback and LLRF areas because it wa
restimated things?

F and RF dynamics

omplexity of RF system,stability of low modes, operational issues - c

nexpected low-mode instabilities ->2 woofers->klystron linearizer->fin

perational intensity, issues ofconstantly moving configurations (klystron

anpower/skill of operational support woefullyunderestimated/under s

adband (coupled-bunch) longitudinal feedback

ssential techniques developed at ALS and other facilities - tremen

ery lucky (wise?) design choices for detection frequency, scalabilit

t features wereessential for success

lexibility (reprogrammability, modular architecture), close ties tomodell

ost importantelement- Creative, highly curiousgroupwith concurrent p

iverse set of interesting challenges
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Longitudinal Feedback System Featur

tiprocessor architecture fully implements ALS/BESSY-II/DA NE/P
irements. Scalable, flexible architecture for up to 8192 bunches w
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SP processor -VME card,4 AT&T DSP 1610s

ME interface - Bus master for data distribution

ownsampler- 500 MHz A/D and VXI Sequencer
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ront-end - Comb filter followed by  (3 GHz) phase detector 

ack-end - AM modulator transfers baseband kick to QPSK’ed carr
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oftware - VxWorks operating system for configuration and control 
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Grow/damp measurement example fro

 ms long data set with 15 ms open-loop section.

filled bunches participate in the modal motion.
sformation to the even-fill eigenmode basis
lifies the picture - there are three strong eigenmodes
is transient. Fitting complex exponentials to the
al motion we extract estimates of the modal
nvalues for both open and closed-loop parts of the
sient.

ingle measurement like this only characterizes the
abilities and the feedback at a single accelerator
rating point.
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LFB Flexibility -Quadrupole instability con

NE e+/e-collider at LNF

 increased operating currents

quadrupole mode longitudinal
instabilities have appeared (the
installed system suppresses the
dipole modes).

implemented a novel quadrupole
trol filter

 software programmability of
the DSP farm

two parallel control paths for
dipole and quadrupole modes.

quadrupole control has been
successful, allowing a 20%
increase in luminosity.

added passive harmonic cavities (to address Tousheck-limited li
t tune change with current. Stability required a novelnegative group de
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Plan , optics changes
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Gro z, etc. are a mystery
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Where We finished - LOM and HOM con

t year of Operations

 to push from 1.2E34 to 2E34 - via current increase, bunch length

gitudinal stability- Data from LER 2900 mA

wth/Damping rate isn’t the issue.Strange interfering signals at 1100 H
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Wha edance)?

Sev

I). N m several stages -

Fron dynamic range, steady-state
offs

Pro noise (broadband) is one
syst ntribute. Narrowband filters
help sensitivity to machine tunes,
ope

Pow n expensive way to increase
gain

Out  oscillation amplitude from
whic  complicated
WEOB

Ultimate/Practical Limits to Instability Con

t Limits theMaximum Gain(e.g. fastest growth rate, or allowed imp

eral Mechanism

oise in feedback filter bandwidth, limits on noise saturation. Gain is fro

t End(BPM to baseband signal) gain limited by required oscillation
ets (synchronous phase transients, orbit offsets)

cessing Block - gain limited by noise in filter bandwidth. Quantizing 
em limit - noise from RF system or front-end circuitry may also co
 with broadband noise. Broad filter bandwidths help with reduced 
rating point - or variations of dynamics with current

er stages- gain scales with kicker impedance, sqrt(output power). A
 (more kickers, more output power).

put power (actually maximum kicker voltage) determines maximum
h linear (non-saturated) control is possible. Saturated behavior is
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II) S n vs. control frequency)

Rela

For an pickup)

limit  over control band

App

Neg ut for causal systems you pay
the 
WEOB

imate/Practical Limits to Instability Control

tability of the feedback loop itself, (e.g. limits on phase shift and gai

ted to time delay between pickup, processing, and actuator

circular machines (systems with kick signal applied on later turn th

 set by revolution time, fastest growth rates, and filter phase slope

ropriate for optimal  control theory applications

LQR

Robust Control

Uncertain Systems

ative group delay over a portion of the frequency band is possible, b
price in increased phase slope away from the negative region
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