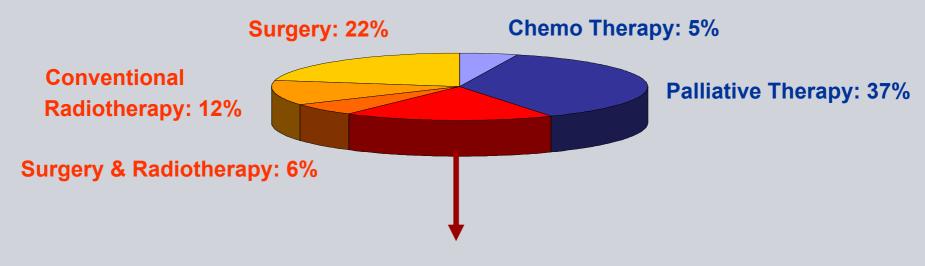
IONTRIS

Careflow with an integrated future

- Particle Therapy Evolution and Market
- Particle Therapy Applications
- Know How Transfer from Research to Healthcare
- Market Players & Collaborations
- Future Research Topics

- Particle Therapy Evolution and Market
- Particle Therapy Applications
- Know How Transfer from Research to Healthcare
- Market Players & Collaborations
- Future Research Topics

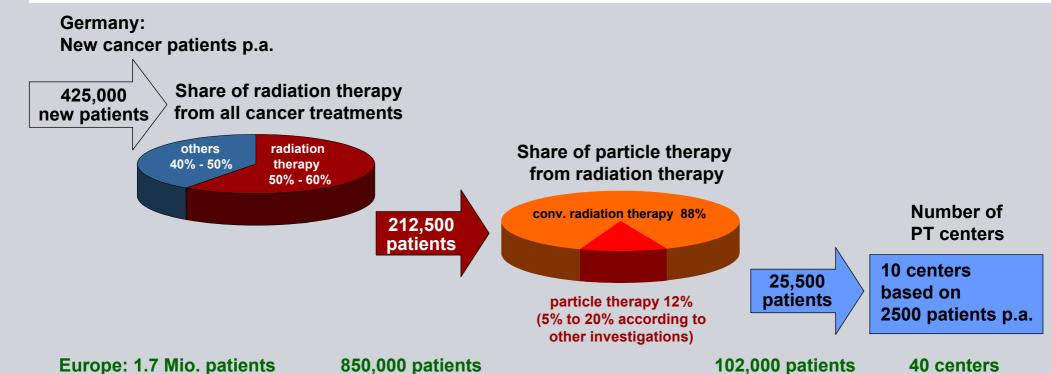

Evolution and Market

SIEMENS

History of Radiation Therapy with Ions

	Today:	Particle therapy is applied in purely clinical centers, e.g.
cal :		Francis H. Burr PTC, Boston; MD Anderson, Houston; University of Florida; U. Penn.
Clinical	Today.	HIT, Heidelberg; Rhön Klinikum AG, Marburg; CNAO, Milano; RPTC, Munich; Essen; Kiel
		HIBMC, Hyogo; NCC, Kashiwa; Shizuoka; PMRC, Tsukuba
		7 First tumor conform radiation with scanned beam – protons at PSI (Villigen, Switzerland), ¹² C-lons at GSI (Darmstadt, Germany)
Clinical	1993	First center for ¹² C-ions therapy in Chiba (Japan)
֟֞֞֞֟֞֓֓֓֓֓֟֟֓֓֓֓֟֟֓֓֟֟֓֓֟֟֟֓֓֟֟֟ ֓֓֓֓֓֓֓֓	1990	First center for proton therapy in Loma Linda (USA)
	1975	LBL irradiated for the first time with ions (helium, carbon, neon)
_	1974	First proton therapy at the Harvard Cyclotron
nenta	1957	Uppsala started with proton treatment
Fundamental	1954	LBL (Lawrence Berkeley Laboratory, USA) started radiotherapy for deep located tumors with protons
	1946	R. R. Wilson proposed charged particles (p, ions) for applications in radiotherapy

Localized Tumors: 58% Metastazised Tumors: 42%



Failure of Local Therapy 18%

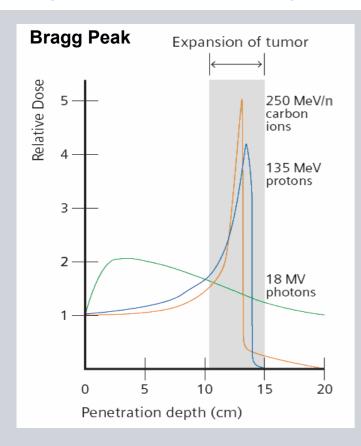
Evolution and Market

SIEMENS

Estimation of Patient Numbers and PT Centers

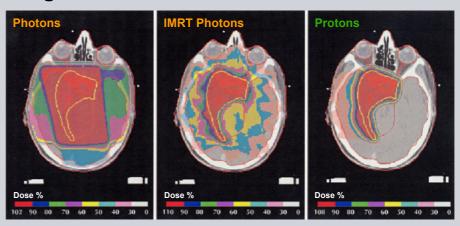
⇒ About 1 particle therapy center per 10 million inhabitants

References: Epidemiology: Robert-Koch-Institut, 2006; radiotherapy: National Cancer Institute, US National Institutes of Health; particle therapy: MedAustron, Etoile Siemens Particle Therapy products and solutions are works-in-progress and require country specific regulatory approval prior to clinical use.



- Particle Therapy Evolution and Market
- Particle Therapy Applications
- Know How Transfer from Research / Industry to Healthcare
- Market Players & Collaborations
- Future Research Topics

Applications


SIEMENS

Reported Common Properties of Protons and Carbon Ions

Objectives:

- Increase of conformity and reduction of integral dose (less interactions with normal tissue, higher quality of life after successful treatment)
- Improve local control rate (less recurrent tumors)
- Higher survival rate

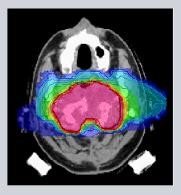
Courtesy of A. Lomax, Paul Scherer Institur, Villigen, Switzerland, - Data on file

Applications

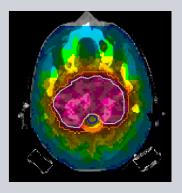
SIEMENS

Reported Clinical Consequences of Protons and Carbon Ions

Higher target conformity due to physics properties of p and ¹²C (active scanning as precondition)


- High dose in tumor volume due to inverse dose profile
- Less scattering for ¹²C
- Reduced dose in organs at risk and healthy tissue

New applications thanks to the biological characteristics of ¹²C


- Radiation resistant tumors
- Slow growing tumors
- Hypoxic tumors

Clinical results

- Low toxicity low integral dose (p and ¹²C)
- Higher tumor control rates, especially for the aforesaid tumors (12C)
- Reduction of fractionation scheme possible (¹²C)

Carbon ions (2 beams)

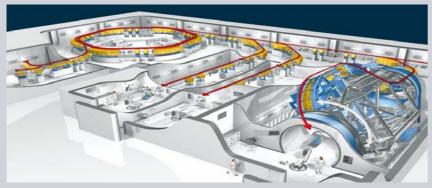
IMRT (9 beams)

Courtesy of the University Hospital, Heidelberg and GSI, Darmstadt

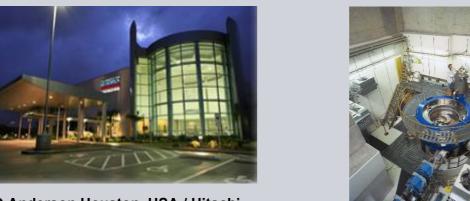
Applications SIEMENS

How does the Clinical Application Impact the Technical Realization?

Requirements of a medical operator	Technical Realization	
Best target conformity	 Scanning Active energy selection Avoid scattering 	
Short treatment times	 High intensity in accelerator, short accelerator cycle times 	
High beam availability	 Fast switching between rooms and ion species No field-specific beam modifiers High system (accelerator) uptime 	
Techniques to treat moving organs	GatingTracking (research)Multi painting (research)	



- Particle Therapy Evolution and Market
- Particle Therapy Applications
- Know How Transfer from Research to Healthcare
- Market Players & Collaborations
- Future Research Topics


Know How Transfer – from Research to Healthcare

SIEMENS

Examples of Research Collaborations

University of Heidelberg, Germany / GSI and Siemens

PSI Villigen, Switzerland / Varian-Accel

NIRS Chiba, Japan / Mitsubishi, Hitachi, Sumitomo

MGH Boston, USA / IBA

MD Anderson Houston, USA / Hitachi

Know How Transfer – from Research to Healthcare

Example: Accelerator Design from GSI to Siemens AG/Danfysik

The HICAT (GSI) accelerator design has been revised

- to reduce construction and operating costs
- to improve technical capabilities
- cooperation of Danfysik / GSI / Siemens

Dipole Magnets RF-Cavity Spectrometer Section (Beam Purification) IH-LINAC RFQ-LINAC Ion Sources Ion Selection SPT Layout

Design changes in the Synchrotron layout

- Fully symmetric lattice
- Lattice type changed from Doublet to FODO → reduction of quadrupole gradient by 30%, smaller β functions, smoother lattice, reduced dipersion function, larger acceptance
- 12 dipoles (each 8 tons) instead of 6 (each 25 tons) → easier installation and handling
- Smaller and lighter quadrupoles
- Optimized injection and extraction system
- Improved in terms of power consumption

Know How Transfer – from Research/Industry to Healthcare

SIEMENS

Example: Accelerator Design from GSI to Siemens AG/Danfysik

Standardization of components

- E.g. Standardization of dipoles and quadrupoles, power supplies
 - → reduction in construction costs, advantages in terms of serviceability.

Service and maintenance concept

- IT Support (Service Software, Service workflow,...)
- Optimized spare part storage
- Condition based maintenance concept (trending, collection of process data) → high uptime

From Research/Industry to Healthcare

What distinguishes a Medical Device from an Industrial Product?

Apply highest Standards for safety and the security for the patient Establish a safety concept for the entire system including the accelerator system. Implement adequate interlock and spill-abort systems.

Follow applicable medical standards, rules and regulations OUNCIL DIRECTIVE 93/42/EEC

concerning medical devices

THE COUNCIL OF THE EUROPEAN communities.

an area without internal frontiers in which the free

devices are different whereas the certification and inspection procedures for such devices differ from one Member State to another, whereas such disparities constitute barriers to trade within the

appropriate, other persons, with regard to the use of medical devices should be harmonized in order to guarantee the free movement of such devices within

Whereas the harmonized provisions must be distinguished from the measures adopted by the Member States to manage the funding of public firectly or indirectly to such devices; whereas,

mentioned measures provided Community law is

by the manufacturer, whereas, therefore, the maintenance or improvement of the level of protection attained in the Member Stares is one of the essential objectives of this Directive:

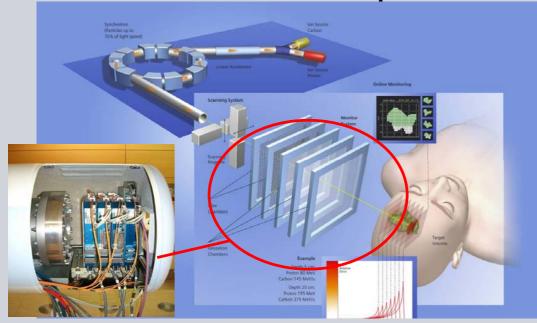
administer medicinal products within the meaning of Council Directive 65/65/EEC of 26 January 1965 on combination and which is not reusable, that single incorporated in the medical devices are labeled to act upon the body with action anoillary to that of the device, the placing of the devices on the market is governed by this Directive; whereas, in this context, the safety, guality and usefulness of the substances must be verified by analogy with the appropriate methods specified in Council Directive 75/318/EEC of 20 May 1075 on the approximation of the laws of the Member States relating to analysical, pharmaco-

⁴ OJ No 22, 9, 6, 1965, p. 369/65. Directive as last amended by Directive 93/27/EEC (OJ No L 113, 30.4.1992, p. 8).

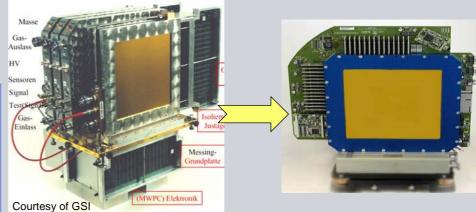
Target values

- Dose uniformity within ± 3%
- Lateral position precision of ± 0.5 mm
- Positioning precision of Bragg-peak: ± 0.3 mm

Example for safety measures:


Beam Application and Monitoring System (BAMS)

- Intensity verification (redundant)
- Lateral Position verification (redundant)
- Feed-back loop to achieve high precision and accuracy of beam application


Know How Transfer – from Research / Industry to Healthcare SIEMENS

Example: Beam Application and Monitoring System (BAMS)

Based on GSI concept a detector system with highly integrated readout electronics has been developed

Beam Application and Monitoring System (BAMS)

- Detector concept using ICs and MWPCs
- Fast dose & position measurement cycle
- High dynamic range :
 - 10⁶ 10¹⁰ particles / s
 - 50 MeV (p) 430 MeV/u (C)
- Integrated readout electronics reusing existing hardware of other Siemens healthcare modalities

- Particle Therapy Evolution and Market
- Particle Therapy Applications
- Know How Transfer from Research to Healthcare
- Market Players & Collaborations
- Future R&D Topics

Market Players & Collaborations

What is the Background of the Market Players?

Particle Therapy	Background	Radiation Therapy
IBA	Accelerator	Elekta (Cooperation)
Hitachi	Accelerator and Heavy Industry	-
Mitsubishi	Accelerator and Heavy Industry	-
Optivus	Operating of one PT Center (Loma Linda)	-
Siemens	Healthcare and Accelerator / Danfysik	Siemens
Sumitomo	Accelerator and Heavy Industry	-
Stillriver	Startup	-
Varian	Radiation Oncology and Accelerator / Accel	Varian
-	-	Accuray
-	-	Tomotherapy

Evolution and Market

From Research to Clinical Routine

5	Today:	Particle therapy is applied in purely clinical centers, e.g.
Clinical		 Francis H. Burr PTC, Boston; MD Anderson, Houston; University of Florida; U. Penn.
Clinical		 HIT, Heidelberg; Rhön Klinikum AG, Marburg; CNAO, Milano; RPTC, Munich; Essen; Kiel
		HIBMC, Hyogo; NCC, Kashiwa; Shizuoka; PMRC, Tsukuba
_ <u>{</u>	1996/97	First tumor conform radiation with scanned beam – protons at PSI (Villigen, Switzerland), ¹² C-lons at GSI (Darmstadt, Germany)
Clinical	1993	First center for ¹² C-ions therapy in Chiba (Japan)
	1990	First center for proton therapy in Loma Linda (USA)
	1975	LBL irradiated for the first time with ions (helium, carbon, neon)
<u></u>	1974	First proton therapy at the Harvard Cyclotron
nenta	1957	Uppsala started with proton treatment
Fundamental Research	1954	LBL (Lawrence Berkeley Laboratory, USA) started radiotherapy for deep located tumors with protons
	1946	R. R. Wilson proposed charged particles (p, ions) for applications in radiotherapy

- Particle Therapy Evolution and Market
- Particle Therapy Applications
- Know How Transfer from Research / Industry to Healthcare
- Market Players & Collaborations
- Future R&D Topics

Main R&D Topics

SIEMENS

What are the typical topics for industry?

- Optimize cost and increase standardization
- Optimize integration into medical workflow
- Secure high uptime and technical operating as a long-term commitment over 20-25 years
- Provide financing models like Public Private Partnership (e.g. Kiel and Essen)

Main R&D Topics

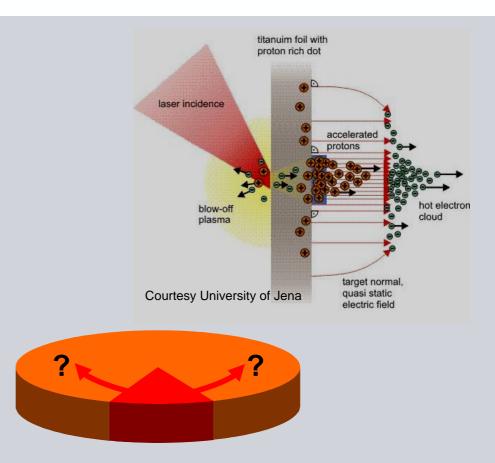
SIEMENS

What topics will remain with Universities and Research Centers?

New Principles for Particle Accelerators

- Laser Accelerated Particle Beams
- Dielectric Wall Accelerators

Radiation Biology


- Radiobiological Models
- Verification of Models

New Clinical Applications

- Moving Targets
- Image Guidance
- Hypofractionation

Clinical Studies

Protocols for new cancer indications

IONTRIS

Careflow with an integrated future

