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adhs INTRODUCTION

- Precise control and stability of beam trajectory are essential to the successful
operation of different types of particle accelerators.

1. Careful accelerator design
2. Continuous identification and minimization/removal of noise sources
3. Active feedback systems

- Fast beam position feedbacks, in particular, are crucial in those cases where
requirements for short (ms-s) and medium (minutes-days) term stability are strictest.

» Storage Ring Synchrotron Radiation Sources

e Large Hadron Collider

e Electron linacs (e+/e- colliders and single-pass FELS)
e Interaction Points in colliders
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4 OUTLINE

- Stability Requirements

- Fast Beam Position Feedback Systems for:
- Storage Ring Synchrotron Radiation Sources

- Large Hadron Collider
- Electron Linacs (e+/e- colliders & FEL)

- Interaction Point in Colliders

- Concluding Remarks
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4 STABILITY REQUIREMENTS
 Electron Linacs (et/e- colliders & FEL)

- Preserve small emittance provided by damping
rings / gun
- Keep ‘golden’ trajectory that reduces or

- Emittance of a few nm-rad
- Optimized optical functions (low B straights)

- Ability to control and minimize emittance : : .
compensates for wake field effects in accelerating

i 0 ... .
coupling <1% _ structures and minimizes quadrupole induced
- 6, < 10um and o, < 10prad at Insertion dispersion

Devices source points - Stability from tens down to some microns
- Stability goal of 5 -10% of o, and o,

- Sub-micron stabilit
4 - FEL undulators: keep overlap between electron

beam and emitted radiation

Large Hadron Collider - 5 ~ few tens of micron

- Stability goal of 10 % of &
- Hadron machine that requires continuous orbit > Few micron stability
control for safe and reliable machine operation

- Global orbit controlled within 0.5mm rms | Interaction Point in Colliders |

- Collimators efficiency depends on beam orbit

- Stability better than ¢/6 < ~25um at - Maintain Luminosity
collimator jaws —> Stability to a fraction of spot size
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Fast Beam Position Feedback Systems for

STORAGE RING SYNCHROTRON
RADIATION SOURCES

- Evolution
- Correction Algorithms
- Feedback Control Algorithms
- System Architecture
- ID Feed forward Systems
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%&’% FROM ANALOG TO DIGITAL, FROM LOCAL TO GLOBAL

- Local Orbit Feedback: " R. O. Hettel

2-MONITOR, 4-MAGNET STEERING SERVO SYSTEM., SSRL. 1982-86
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%&’% FROM ANALOG TO DIGITAL, FROM LOCAL TO GLOBAL

- Global Harmonic Feedback:

L.H. Yu, R. Biscardi, J. Bittner, E. Bozoki,

J. Galayda, S. Krinsky, R. Nawrocky,
0. Singh, G. Vignola
NSLS, 1988
- Servo/controller: analog Py
linear electronics
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& FROM ANALOG TO DIGITAL, FROM LOCAL TO GLOBAL

¢

- Digital Global Feedback:

J. Carwardine, Y. Chung, F. Lenkszus, et al.

- APS, 1996-97
- Digital controller (DSPs)
- Reflective memory Odd Sector Correciors Even Sector Correciors
- 160 BPMs, 38 correctors/plane Horizontal = * Horizontal
- Singular Value Decomposition verical * Vertical
Odd Sector  8bpms EBbpms | Ewven Sector
BEPM Crate u BFM Crate
o g B
g 313 | W
Sample Clock i - al |3E[PEp 1oray BPMS{
(1KHz) — | . -
fro 10 T
mi upsiream Reflactive Memory NE'TWEJI'HF to downstream 1O

(29 Mbytalsac fiber ning)
Controls/ERPICS Network
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&

& CORRECTION ALGORITHM

- Inversion of Response Matrix based on Singular Value Decomposition (SVD):

Correction Patio
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Singular values

- Number of retained singular values:
compromise between orbit correction
needs, control strength limits, sensitivity to
noise (BPM, etc...)

- Add weighting coefficients

- Transform original Multi-Input-Multi-Output
(MIMO) system into a number of Single-Input-

Single-Output (SISO) ones
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&

- Proportional Integral Derivative (PID)
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& FEEDBACK CONTROL ALGORITHMS

‘Harmonic Suppressors’

- Feedback repetition rate 5 — 10kHz
- Noise attenuation up to 100 - 150Hz

Closed Ian tranﬁfer fum:tmns at the SLS {damplng Llptﬂ ~100 Hz}l
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ORBIT ERROR FREQUENCY SPECTRUM
%7& IN THE SVD TRANSFORMED SPACE

Smaller 160
sing. values

- ‘Legitimate’ perturbations are aligned
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140
more with modes associated to larger
singular values, while random noise =
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—> Correction channels with small
associated singular value are

assigned reduced bandwidth and gain
(individual assignment of PID parameters)
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4 SYSTEM ARCHITECTURE

NII\IBCI;)I\II'II':CtOTS . 0000000 oooo..l..— {
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M

- Distributed processing [ALS, APS,
Diamond, Elettra, SLS, Solell, etc...]

- Centralized processing [ALBA, ESRF,
PETRAIIl, SPEARS, etc...]

- Fast, deterministic, reliable network:
from custom designs to Ethernet based
solutions. Redundancy.

- Processing platform: from FPGAs,
DSPs, to control system computers
with real-time operating system

- Diagnostic capabilities: localize beam
noise sources, machine physics studies,
post mortem analysis, direct measure of

system transfer function, etc...
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4 ID FEEDFORWARD SYSTEMS

- In addition to feedbacks, feed forward systems are implemented to compensate
for the residual orbit distortion associated with the operation of the IDs.

- In case of ID with a relatively fast switching rate of the
radiation polarization (up to some tens of Hz), specific 100
strategies to evaluate the feed forward look up tables:

H. Tanaka, SPring-8

H:orizonts:ul orbit \fariation:at BPMi15 ! (@

- dynamic effects L
i : : . 50 A
- disentangle real distortion from background noise
APPLE-2 mechanical switching undulator, 0.1Hz £ | (I .
Z 0 -
No feed forward —— %
3_g 50 f
- Horizontal orbit variation % :
.
-100 ff -

Active Feed forward —

No undulator

v

Time (sec)
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Fast Beam Position Feedback System for the

LARGE HADRON COLLIDER
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aha LHC ORBIT FEEDBACK

- SVD correction algorithm
- PID controller (with Smith-Predictor extension to
compensate for transmission delays)

- Centralized processing architecture, adopts the

LHC redundant Technical Network (Gb-Ethernet
and QoS)

- Feedback rate: 25 - 50Hz

R. Steinhagen, CERN
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: g10F 7
- >1056 BPMs, ~ 1060 superconducting o /' Loop sensitivity for different
corrector magnets "IVE // sampling frequencies
203 ' (red: 50Hz; green: 25Hz; blue:
. . ) U 10Hz; purple: 5Hz)
- Design of strategies for on-line =R
. . -25F |
compensation of component failures - / 0.8Hz bandwidth
is essential. -30[
107 10™ 1

10 10°
frequency [HzF
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Fast Beam Position Feedback Systems for

ELECTRON LINACS
(e+/e- Colliders & FEL)

- Pulse-to-pulse Feedbacks
- Intra-bunch Train Feedbacks
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4 LINAC FEEDBACK TYPES

- Pulse-to-pulse Feedbacks:

- Typical beam pulse repetition rates: from few to about one hundred Hz
- Can successfully counteract the effect of drifts and noise up to a few Hz

- Intra-bunch Train Feedbacks:

- Take advantage of the relatively long bunch trains that are available, in
particular, from superconducting machines
- Act on a bunch-by-bunch basis within the same train

I;Z?:t[ﬂ? N. bunches/pulse | Bunch interval [ns] I?eenag]Thlj[Lrjrizt]a
FLASH| 10 800 1000 500
X-FEL 10 3250 200 =
LC 5 2625 369 (180 min.) 1000
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& PULSE TO PULSE FEEDBACKS

- SLC Trajectory Feedback: T. Himel, L. Hendrickson et al., SLAC
- State-space formalism for | Damping Rings

Linac

feedback design < o* Target
- Loops executed by the standard 5 EE%S
: % S(

“‘SSSSSE/DIZRSSSE
= i Collider ~ Final| Y ¢

microprocessors that controlled the ?/\ p, mros Foous) |
SLC equipment G s . i So
quip ° un o* Return Line Linac Transport s / ;3\ 0
From Linac < 0
- ‘Cascaded’ feedbacks T Intensity N ©
) S Stesring  C Collision
- Transport matrices between E Energy O Optimization e-ss

loops adaptively upgraded
— N o

Loop 1 »| Loop 2 » Loop 3 »| Loop 4

)

- Operated at a subset of the 120 Hz beam rate, due to bandwidth limitations

- In the presence of strong wake fields, the beam transport is different depending on
the origin of the perturbation - need more complete interconnection where each
feedback got information from all upstream loops.
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4o PULSE TO PULSE FEEDBACKS

K. Rehlich et al., DESY

S (DAQ storage’

- FLASH Data Acquisition System (DAQ): =, o] @
- Supports pulse-to-pulse feedbacks up to the = ===
maximum 10Hz rate cren

builder AL Lo

- Provides synchronized data recording of the
individual 800 1us-spaced bunches per pulse

DAQ server

Buffer managar
main memory (32 GB)

- The system is completely integrated in the
DOOCS control system of FLASH

mun Q’ collector
- Feedbacks are implemented as control oot
system middle layer processes.
ADC, Camera, . 7" ADC, Camera, ... PLC, slow ADC, ...
s Inje-::mr. = :.Gi‘ Booster BCZ  Main acceloraior c:::imrimu Undulator Exp
T S e — e a—1 PR

- A similar approach to the implementation of pulse-to-pulse beam
feedbacks is being pursued at the LCLS, SCSS, ILC and FERMI@EIlettra.
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4 INTRA-BUNCH TRAIN FEEDBACKS

- Intra-bunch train feedback system is under development for the European X-FEL

- Will individually act on the 3250 200ns-spaced bunches that constitute each 10Hz electron
macropulse, with a target bunch-to-bunch BPM position resolution <lum.

“upstream BPMs” “downstream BPMs”
BPM1 BPM2 Kicker 1 Kicker 2 BPM3 BPM4
A VY e- Beam

A 4
\|: R < T TV.Schlott,B. Keil et al., PSI

Electronics |«

- FPGAs as feedback processing elements. In parallel, DSPs identify and correct
repetitive beam perturbations that are the same from bunch train to bunch train using
adaptive feed forward.

- Downstream BPMs check and adaptively optimize the model used for the calculation of
the kicks.
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Fast Beam Position Feedback Systems for

INTERACTION POINT IN COLLIDERS
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@}%INTERACTION POINT FEEDBACKS

— . @ Correctors

- T B BPFM%
E:

Fas Fast

- In circular colliders, trajectory feedbacks implement
closed local orbit bumps to adjust the beam position

and/or angle at the IP (e.g. RHIC [C. Montag et al.] = T
and HERA-E [J. Keil et al.]). veras (. —Comireher — L e

ZEUS

- Beam-beam deflection mechanism successfully exploited to determine IP beam offsets for
feedbacks at electron positron colliders [SLC, KEKB].

- Luminosity based systems use ‘dithering’ techniques:
- Operate sub-tolerance variations of the beam position or angle around a given value to allow
measurements of the luminosity slope and subsequent change of the trajectory settings.

- Recent system upgrade at PEP-II [A.S. Fisher et al.].
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@}%INTERACTION POINT FEEDBACKS

- Intra-Bunch Train Feedback for the ILC Interaction Point:

- Concept: One BPM to measure the position of
early bunches in the outgoing beam + one kicker
to act on the subsequent bunches of the

Kicker

= <

incoming other beam. Delay

Processor

- Based on beam-beam interaction
- Target BPM resolution < 1um
- FPGA as feedback processing element

- FONT (Feedback On Nano-second Timescales) collaboration

Bun(ch 1 154ns Bu)pch 2

>< ) - Tests at KEK-ATF:
Latency Slack -8/

140ns latency

AN

J Kicker pulse

P. Burrows (John Adams Institute, Oxford University) et al.
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4 CONCLUDING REMARKS

- Fast beam position feedback systems are evolving ‘fast’: driven by the increasing
requirements of accelerator applications and enabled by the progress in digital processing
and networking technologies.

- Needed processing computing power seems (is likely) to be adequate.

- Fast beam position feedbacks are key components to achieve and maintain the target
machine parameters.
—=> Higher levels of reliability and availability

—> Higher levels of system integration (from modelling tool to flexible
automation tool, from system to beam diagnostics, etc...)

- Significant (software) effort:

- Space for collaboration and transfer of expertise (systems) among different

accelerator areas (intra-bunch train feedbacks have many analogies with coupled-
bunch feedback developed in particle factories and synch. radiation sources;
specifications of damping rings are very similar to those of synchrotron radiation
sources)

- COTS components/subsystems exist and can help.
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dei SOURCES OF INSTABILITY

- Mechanical displacement of magnets (quadrupoles). These, in turn, are driven by natural and
human induced ground motion, thermally induced effects, cooling liquid flow, etc...

- Current power supplies noise, mains induced noise
- External stray electrical and magnetic fields

| S.R. Synch. Rad. Sources || Electron Linacs (e+/e- colliders & FEL) |

- Gap and phase changes of Insertion Devices - Dynamic displacement of quadrupoles and

- Fast polarization switching devices (<100Hz) ?(\:/(;erliz%;]nsgOitiggt?nrjzitg\éagzgﬁIdS)

- Jitters can be transformed from one type to

| Large Hadron Collider || another, which make it difficult to identify the

primary noise source.
- Dynamic effects of superconducting magnets
(snapback and decay due to persistent current,

ramp induced effects)
- Beta-squeeze of the final focus optics in the | Interaction Point in Colliders |

experimental insertions ‘ L : : \
P - Vibrations of final focusing magnets
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&

- Limits:
1. low-pass behavior of power supply +
corrector magnet (eddy currents)

2. latency in data acquisition, transmission and
processing (400 — 500 ns)

- Solutions:

& SYSTEM DYNAMICS

dB

1 z
Freguency [Hz]
Phase

a
10 10

Freguency [Hz]

- 1. Use reduced number of faster correctors (e.g. air core) dedicated to fast orbit feedback
[APS, ESRF, ALS, Soleil], with slow feedback running in parallel

- 2. Acquire turn-by-turn beam position data from BPMs electronics [PETRA 1]
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