

OVERVIEW OF FAST BEAM POSITION FEEDBACK SYSTEMS

Daniele Bulfone

Sincrotrone Trieste

June 24, 2008 EPAC'08, Genoa, Italy

Overview of Fast Beam Position Feedback Systems, D. Bulfone

INTRODUCTION

- Precise control and stability of beam trajectory are essential to the successful operation of different types of particle accelerators.

- 1. Careful accelerator design
- 2. Continuous identification and minimization/removal of noise sources

3. Active feedback systems

- <u>Fast beam position feedbacks</u>, in particular, are crucial in those cases where requirements for short (ms-s) and medium (minutes-days) term stability are strictest.

- Storage Ring Synchrotron Radiation Sources
- Large Hadron Collider
- Electron linacs (e+/e- colliders and single-pass FELs)
- Interaction Points in colliders

- Stability Requirements

- Fast Beam Position Feedback Systems for:

- Storage Ring Synchrotron Radiation Sources
- Large Hadron Collider
- Electron Linacs (e+/e- colliders & FEL)
- Interaction Point in Colliders
- Concluding Remarks

STABILITY REQUIREMENTS

S.R. Synch. Rad. Sources	Electron Linacs (e+/e- colliders & FEL)	
- Emittance of a few nm·rad - Optimized optical functions (low β straights) - Ability to control and minimize emittance coupling <1% - σ_y < 10 μ m and $\sigma_{y'}$ < 10 μ rad at Insertion Devices source points - Stability goal of 5 -10% of σ_y and $\sigma_{y'}$	 Preserve small emittance provided by damping rings / gun Keep 'golden' trajectory that reduces or compensates for wake field effects in accelerating structures and minimizes quadrupole induced dispersion → Stability from tens down to some microns 	
→ Sub-micron stability	- FEL undulators: keep overlap between electron	
	beam and emitted radiation - σ ~ few tens of micron	
Large Hadron Collider	- σ ~ few tens of micron	
- Hadron machine that requires continuous orbit control for safe and reliable machine operation	- σ ~ few tens of micron - Stability goal of 10 % of σ → Few micron stability	
 Large Hadron Collider Hadron machine that requires continuous orbit control for safe and reliable machine operation Global orbit controlled within 0.5mm rms 	- σ ~ few tens of micron - Stability goal of 10 % of σ → Few micron stability Interaction Point in Colliders	

Fast Beam Position Feedback Systems for

STORAGE RING SYNCHROTRON RADIATION SOURCES

Evolution
 Correction Algorithms
 Feedback Control Algorithms

 System Architecture
 ID Feed forward Systems

FROM ANALOG TO DIGITAL, FROM LOCAL TO GLOBAL

- Local Orbit Feedback:

2-MONITOR, 4-MAGNET STEERING SERVO SYSTEM

R. O. Hettel SSRL, 1982-86

- Servo/controller: analog linear electronics

FROM ANALOG TO DIGITAL, FROM LOCAL TO GLOBAL

- Global Harmonic Feedback:

L.H. Yu, R. Biscardi, J. Bittner, E. Bozoki, J. Galayda, S. Krinsky, R. Nawrocky, O. Singh, G. Vignola **NSLS**, 1988 13 - Servo/controller: analog P4 linear electronics 1₂ 14 P2 P. t₁ F Т М

- Digital Global Feedback:

J. Carwardine, Y. Chung, F. Lenkszus, et al. APS, 1996-97

- Digital controller (DSPs)
- Reflective memory
- 160 BPMs, 38 correctors/plane
- Singular Value Decomposition

CORRECTION ALGORITHM

- Inversion of Response Matrix based on Singular Value Decomposition (SVD):

- Number of retained singular values: compromise between orbit correction needs, control strength limits, sensitivity to noise (BPM, etc...)
- Add weighting coefficients
- Transform original Multi-Input-Multi-Output (MIMO) system into a number of Single-Input-Single-Output (SISO) ones

FEEDBACK CONTROL ALGORITHMS

- Proportional Integral Derivative (PID) + 'Harmonic Suppressors'

ORBIT ERROR FREQUENCY SPECTRUM IN THE SVD TRANSFORMED SPACE

- 'Legitimate' perturbations are aligned more with modes associated to larger singular values, while random noise (BPMs, etc...) is uniformly distributed

→ Correction channels with small associated singular value are assigned reduced bandwidth and gain (individual assignment of PID parameters)

SYSTEM ARCHITECTURE

- Distributed processing [ALS, APS, Diamond, Elettra, SLS, Soleil, etc...]

- Centralized processing [ALBA, ESRF, PETRAIII, SPEAR3, etc...]

- Fast, deterministic, reliable network: from custom designs to Ethernet based solutions. Redundancy.

- Processing platform: from FPGAs, DSPs, to control system computers with real-time operating system

- <u>Diagnostic capabilities</u>: localize beam noise sources, machine physics studies, post mortem analysis, direct measure of system transfer function, etc...

ID FEEDFORWARD SYSTEMS

- In addition to feedbacks, feed forward systems are implemented to compensate for the residual orbit distortion associated with the operation of the IDs.

- In case of ID with a relatively fast switching rate of the radiation polarization (up to some tens of Hz), specific strategies to evaluate the feed forward look up tables:

- dynamic effects

100

Horizontal orbit variation at BPM15

H. Tanaka, SPring-8

(a)

Fast Beam Position Feedback System for the

LARGE HADRON COLLIDER

LHC ORBIT FEEDBACK

- >1056 BPMs, ~ 1060 superconducting corrector magnets
- Design of strategies for on-line compensation of component failures is essential.

- PID controller (with Smith-Predictor extension to compensate for transmission delays)
- Centralized processing architecture, adopts the LHC redundant Technical Network (Gb-Ethernet and QoS)
- Feedback rate: 25 50Hz

Fast Beam Position Feedback Systems for

ELECTRON LINACS

(e+/e- Colliders & FEL)

- Pulse-to-pulse Feedbacks - Intra-bunch Train Feedbacks

LINAC FEEDBACK TYPES

- Pulse-to-pulse Feedbacks:

- Typical beam pulse repetition rates: from few to about one hundred Hz
- Can successfully counteract the effect of drifts and noise up to a few Hz

- Intra-bunch Train Feedbacks:

- Take advantage of the relatively long bunch trains that are available, in particular, from superconducting machines
- Act on a bunch-by-bunch basis within the same train

	Repetition Rate [Hz]	N. bunches/pulse	Bunch interval [ns]	Beam pulse length [ms]
FLASH	10	800	1000	800
X-FEL	10	3250	200	650
ILC	5	2625	369 (180 min.)	1000

PULSE TO PULSE FEEDBACKS

- SLC Trajectory Feedback:

- State-space formalism for feedback design

- Loops executed by the standard microprocessors that controlled the SLC equipment

Loop 1

- 'Cascaded' feedbacks

- Transport matrices between loops adaptively upgraded

- Operated at a subset of the 120 Hz beam rate, due to bandwidth limitations

- In the presence of strong wake fields, the beam transport is different depending on the origin of the perturbation \rightarrow need more complete interconnection where each feedback got information from all upstream loops.

PULSE TO PULSE FEEDBACKS

- FLASH Data Acquisition System (DAQ):

- Supports pulse-to-pulse feedbacks up to the maximum 10Hz rate

- Provides synchronized data recording of the individual 800 1us-spaced bunches per pulse

- The system is completely integrated in the DOOCS control system of FLASH

- Feedbacks are implemented as control system middle layer processes.

- A similar approach to the implementation of pulse-to-pulse beam feedbacks is being pursued at the LCLS, SCSS, ILC and FERMI@Elettra.

Laser

INTRA-BUNCH TRAIN FEEDBACKS

- Intra-bunch train feedback system is under development for the European X-FEL
- Will individually act on the 3250 200ns-spaced bunches that constitute each 10Hz electron macropulse, with a target bunch-to-bunch BPM position resolution $<1\mu$ m.

- FPGAs as feedback processing elements. In parallel, DSPs identify and correct repetitive beam perturbations that are the same from bunch train to bunch train using adaptive feed forward.
- Downstream BPMs check and adaptively optimize the model used for the calculation of the kicks.

Fast Beam Position Feedback Systems for

INTERACTION POINT IN COLLIDERS

INTERACTION POINT FEEDBACKS

- In circular colliders, trajectory feedbacks implement closed local orbit bumps to adjust the beam position and/or angle at the IP (e.g. RHIC [C. Montag et al.] and HERA-E [J. Keil et al.]).

- Beam-beam deflection mechanism successfully exploited to determine IP beam offsets for feedbacks at electron positron colliders [SLC, KEKB].
- Luminosity based systems use 'dithering' techniques:
 - Operate sub-tolerance variations of the beam position or angle around a given value to allow measurements of the luminosity slope and subsequent change of the trajectory settings.
- Recent system upgrade at PEP-II [A.S. Fisher et al.].

INTERACTION POINT FEEDBACKS

- Intra-Bunch Train Feedback for the ILC Interaction Point:

- Concept: One BPM to measure the position of early bunches in the outgoing beam + one kicker to act on the subsequent bunches of the incoming other beam.
- Based on beam-beam interaction
- Target BPM resolution < $1\mu m$
- FPGA as feedback processing element
- FONT (Feedback On Nano-second Timescales) collaboration

P. Burrows (John Adams Institute, Oxford University) et al.

CONCLUDING REMARKS

- Fast beam position feedback systems are evolving 'fast': driven by the increasing requirements of accelerator applications and enabled by the progress in digital processing and networking technologies.

- Needed processing computing power seems (is likely) to be adequate.

- Fast beam position feedbacks are key components to achieve and maintain the target machine parameters.

 \rightarrow Higher levels of reliability and availability

 \rightarrow Higher levels of system integration (from modelling tool to flexible automation tool, from system to beam diagnostics, etc...)

- Significant (software) effort:

- Space for collaboration and transfer of expertise (systems) among different accelerator areas (intra-bunch train feedbacks have many analogies with coupled-bunch feedback developed in particle factories and synch. radiation sources; specifications of damping rings are very similar to those of synchrotron radiation sources)

- COTS components/subsystems exist and can help.

- R. Steinhagen (CERN)
- K. Rehlich (DESY)
- G. Rehm (Diamond)
- M. Serio (INFN-LNF)
- P. Burrows (John Adams Institute, Oxford University)
- B. Podobedov (NSLS)
- M. Boege, B. Keil and V. Schlott (PSI)
- S. Di Mitri, M. Lonza and C. Scafuri (Sincrotrone Trieste)
- A. S. Fisher, N. Phinney, T. Straumann, A. Terebilo (SLAC)
- H. Tanaka and R. Tanaka (SPring-8)

SOURCES OF INSTABILITY

- Mechanical displacement of magnets (<u>quadrupoles</u>). These, in turn, are driven by natural and human induced ground motion, thermally induced effects, cooling liquid flow, etc...

- Current power supplies noise, mains induced noise
- External stray electrical and magnetic fields

S.R. Synch. Rad. Sources	Electron Linacs (e+/e- colliders & FEL)	
 Gap and phase changes of Insertion Devices Fast polarization switching devices (<100Hz) 	 Dynamic displacement of quadrupoles and accelerating structures (wake fields) Variations of the injected beam 	
Large Hadron Collider	- Jitters can be transformed from one type to another. which make it difficult to identify the	
- Dynamic effects of superconducting magnets	primary noise source.	
(shapback and decay due to persistent current,		
- Beta-squeeze of the final focus optics in the experimental insertions	Interaction Point in Colliders	
	- Vibrations of final focusing magnets	

SYSTEM DYNAMICS

- Limits:

1. low-pass behavior of power supply + corrector magnet (eddy currents)

2. latency in data acquisition, transmission and processing (400 – 500 $\mu s)$

- Solutions:

→ 1. Use reduced number of faster correctors (e.g. air core) dedicated to fast orbit feedback [APS, ESRF, ALS, Soleil], with slow feedback running in parallel

 \rightarrow 2. Acquire turn-by-turn beam position data from BPMs electronics [PETRA III]